Home
Class 11
MATHS
Prove That (1^(3))/( 1) + (1^(3) + 2^(3)...

Prove That `(1^(3))/( 1) + (1^(3) + 2^(3))/(1+3) + (1^(3) + 2^(3) + 3^(3))/( 1 + 3+ 5)` + . . . upto n terms `= (n)/(24) [2n^(2) + 9n + 13]`

Text Solution

Verified by Experts

The correct Answer is:
p (n) is true for all n
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 2 (a)|15 Videos
  • MARCH - 2016 (TELANGANA)

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Section -C (Long answer type quesitons)|7 Videos
  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS |45 Videos

Similar Questions

Explore conceptually related problems

(1^(2) )/( 1) + (1^(2) + 2^(2) )/(1+2) + (1^(2) + 2^(2) + 3^(2) )/( 1+ 2+ 3)+ …. + n terms =

1^(2) + 3^(2) + 5^(2) + …. upto n terms =

S_(n) = 1^(3) + 2^(3) + 3^(3) + …... + n^(3) and T_(n) = 1+ 2 + 3+ 4…...n

1^(3) + 1^(2) + 1+2^(3) + 2^(2) + 2+3^(2) + 3^(2) + 3+3… 3n terms =

1+ ((1)/(3) + (1)/(3^2) ) + (( 1)/( 3^3) + (1)/( 3^4) + (1)/( 3^5) ) + .... sum of the terms in the n^( th) bracket=

(1)/(1.3) + (1)/(3.5) + (1)/(5.7) + …. (n-3) terms

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)