Home
Class 11
MATHS
|(a, a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c...

`|(a, a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0, |(a, a^(2),1),(b,b^(2),1),(c,c^(2),1)|!=0`అయితే abc=-1 అని చూపండి.

Text Solution

Verified by Experts

The correct Answer is:
`abc=-1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES (EXERCISE -3( e)|15 Videos
  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES (EXERCISE -3( f)|12 Videos
  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES (EXERCISE -3( c)|10 Videos
  • MATHEMATICAL INDUCTION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 2 (a)|15 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos

Similar Questions

Explore conceptually related problems

|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=

If |(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 and vectors (1,a,a^(2)),(1,b,b^(2)) and (1,c,c^(2)) are non coplanar then the product abc=

IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that abc=1

|(1,1,1),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3))|=

If bc+ca+ab=18 , and |(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3))|=lambda|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))| the value of lambda is

Without expanding the determinant, prove that (i) |{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}| (ii) |{:(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}| (iii) |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

VIKRAM PUBLICATION ( ANDHRA PUBLICATION)-MATRICES -TEXTUAL EXERCISES (EXERCISE -3( d)
  1. |(a,b,c),(b,c,a),(c,a,b)|=

    Text Solution

    |

  2. Find the determinant of the matrix [(1^(2),2^(2),3^(2)),(2^(2),3^(2),4...

    Text Solution

    |

  3. IF A=[{:(1,0,0),(2,3,4),(5,-6,x):}] and det A=45 then find x.

    Text Solution

    |

  4. Show that |{:(bc,b+c,1),(ca,c+a,1),(ab,a+b,1):}|=(a-b)(b-c)(c-a)

    Text Solution

    |

  5. |(b+c, c+a, a+b),(a+b, b+c, c+a),(a, b,c)]=a^(3)+b^(3)+c^(3)-3abcఅని చ...

    Text Solution

    |

  6. Prove that |{:(y+z,x,x),(y,z+x,y),(z,z,x+y):}|=4xyz

    Text Solution

    |

  7. |(a, a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0, |(a, a^(2)...

    Text Solution

    |

  8. Without expanding the determinant, prove that: (i) |{:(alpha, alpha^...

    Text Solution

    |

  9. Without expanding the determinant, prove that: |{:(alpha xi, beta psi...

    Text Solution

    |

  10. Without expanding the determinant, prove that: |{:(1, beta gamma, be...

    Text Solution

    |

  11. If Delta(1)=|{:(a(1)^(2)+b(1)+c(1),a(1)a(2)|b(2)|c(2),a(1)a(3)+b(3)+c(...

    Text Solution

    |

  12. Delta1=|(1,cos alpha, cos beta),(cos alpha , 1, cos gamma),(cos beta, ...

    Text Solution

    |

  13. Show that |{:(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b):}|=2(a+b+c)^3

    Text Solution

    |

  14. Show that |{:(a,b,c),(b,c,a),(c,a,b):}|^2=|{:(2bc-a^(2),c^(2),b^(2)),(...

    Text Solution

    |

  15. Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

    Text Solution

    |

  16. Show that |{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(2),b^(3),c^(3)):}|=abc(a-...

    Text Solution

    |

  17. Show that A=|{:(-2a,a+b,c+a),(a+b,-2b,b+c),(c+a,c+b,-2c):}|=4(a+b)(b+c...

    Text Solution

    |

  18. Show that |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

    Text Solution

    |

  19. Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

    Text Solution

    |

  20. Show that |{:(x,a,a),(a,x,a),(a,a,x):}|=(x+2a)(x-a)^2

    Text Solution

    |