Home
Class 11
MATHS
if A = [(I,0)(0,-i)] then show that A^(2...

if `A = [(I,0)(0,-i)]` then show that `A^(2) = -1 (i^(2)=-1)`.

Text Solution

Verified by Experts

The correct Answer is:
`-1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES (EXERCISE -3( i))|4 Videos
  • MATHEMATICAL INDUCTION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 2 (a)|15 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos

Similar Questions

Explore conceptually related problems

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .

If A=[(i,0),(0,i)] then find A^(2) .

If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3) = a^(3)I+3a^(2)bE where I is identify matrix of order 2.

If A = [(1,2,2),(2,1,2),(2,2,1)] then show that A^(2)-4A-5I = O .

If A=[(0,-i),(-i,0)] then A^(2)=

IF A=[[i,0],[0,-1]:}] then show that A^2=[[-1,0],[0,1]] .

If A=[(1,2,3),(3,-2,1),(4,2,1)] , then show that A^(3)-23A-40I=0

If A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-3I=O , where I is unit matrix of order 3

If A=[(i,0),(0,i)] , find A^(2) .

VIKRAM PUBLICATION ( ANDHRA PUBLICATION)-MATRICES -SOLVED PROBLEMS
  1. If A = [(0,1,2),(1,2,3),(2,3,4)], B = [(1,-2),(-1,0),(2,-1)] then find...

    Text Solution

    |

  2. If A=[(1,-2,3),(2,3,-1),(-3,1,2)] and B=[(1,0,2),(0,1,2),(1,2,0)] then...

    Text Solution

    |

  3. if A = [(I,0)(0,-i)] then show that A^(2) = -1 (i^(2)=-1).

    Text Solution

    |

  4. If A = [(cos theta, sin theta),(-sin theta, cos theta)] then show that...

    Text Solution

    |

  5. IF A=[{:(1,2,2),(2,1,2),(2,2,1):}] then show that A^2-4A-5I=O.

    Text Solution

    |

  6. IF A=[{:(-2,1,0),(3,4,-5):}] and B=[{:(1,2),(4,3),(-1,5):}] then fin...

    Text Solution

    |

  7. IF A=[{:(-1,2),(0,1):}] then find AA'. Do A and A' commute with respec...

    Text Solution

    |

  8. If [(0,4,-2),(-4,0,8),(2,-8,x)] is a skew symmetric matrix then find t...

    Text Solution

    |

  9. For any n xx n matrix A, prove that A can be uniquely expressed as a s...

    Text Solution

    |

  10. Show that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)

    Text Solution

    |

  11. Show that |{:(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a):}|=2|{:(a,b,c),...

    Text Solution

    |

  12. Show that |{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}| =(a-b)(b-c)(c-a)(a...

    Text Solution

    |

  13. find determinant of |(1, omega, omega^(2)),(omega, omega^(2),1),(omega...

    Text Solution

    |

  14. Show that |{:(a-b-c," "2a," "2a),(" "2b,b-c-a," "2b),(" "2c," "2...

    Text Solution

    |

  15. Show that the determinant of skew - symmetric matrix of order three is...

    Text Solution

    |

  16. Fiind the valueof x if: |{:(x-2, 2x-3, 3x-4),(x-4, 2x-9, 3x-16),(x-8...

    Text Solution

    |

  17. Find the Adjoint and Inverse of the matrix A = [(1,2),(3,-5)]

    Text Solution

    |

  18. Find the adjoint and the inverse of the matrix A=[{:(1,3,3),(1,4,3),(1...

    Text Solution

    |

  19. Show that the matrix A=[{:(1,2,1),(3,2,3),(1,1,2):}] is non-singular a...

    Text Solution

    |

  20. Find the rank of A=[{:(0,1,2),(1,2,3),(3,2,1):}] using elementary tran...

    Text Solution

    |