Home
Class 11
MATHS
If vec(a) = 7vec(i) -2vec(j) + 3vec(k), ...

If `vec(a) = 7vec(i) -2vec(j) + 3vec(k), vec(b)= 2vec(i) + 8vec(k), vec(c ) =vec(i) + vec(j) + vec(k)`, then verify that `vec(a) xx (vec(b) + vec(c ))= (vec(a) xx vec(b)) + (vec(a) xx vec(c ))` (or) prove that cross product is distributive over addition

Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) I|15 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) II|17 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(b) II|11 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) III.|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2vec(i) + 3vec(j) + 4vec(k), vec(b)= vec(i) + vec(j)- vec(k), vec(c )= vec(i) - vec(j) + vec(k) then verify that vec(a) xx (vec(b) xx vec(c )) is perpendicular to vec(a)

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

If vec(a)-vec(i)-2vec(j)-3vec(k), vec(b)=2vec(i)+vec(j)-vec(k) and vec(c )=vec(i)+3vec(j)-2vec(k) , verify that vec(a) xx (vec(b) xx vec(c )) = (vec(a).vec(c ))vec(b)-(vec(a).vec(b))vec(c ) .

If vec(a)= -vec(i) + vec(j) + vec(k), vec(b)= vec(i)-vec(j) + vec(k), vec(c )= vec(i) + vec(j)-vec(k) , then the vectors vec(a) xx vec(b), vec(b) xx vec(c ), vec(c ) xx vec(a) are

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=

vec(a)= 2vec(i) + vec(j) -vec(k), vec(b)= -vec(i) + 2vec(j)- 4vec(k) and vec(c )= vec(i) + vec(j) + vec(k) , then find (vec(a) xx vec(b)).(vec(b) xx vec(c )) .

If 13 vec(a)= 3vec(i) + 4vec(j)+ 12vec(k), 13vec(b)= 4vec(i)-12vec(j) + 3vec(k), 13vec(c )=12vec(i) + 3vec(j)-4vec(k) , then vec(a) xx vec(b) =

If vec(a)= 3 vec(i)- vec(j)-2vec(k), vec(b)= 2vec(i) + 3vec(j) + vec(k) , then (vec(a) + 2vec(b)) xx (2vec(a) - vec(b)) =

If vec(a)= vec(i) + vec(j)+ vec(k), vec(c )= vec(j)- vec(k) , then find vector vec(b) such that vec(a) xx vec(b)= vec(c ) and vec(a).vec(b)= 3

If vec(a)= vec(i) + vec(j) + vec(k), vec(b)= 2vec(i)-3vec(j) + vec(k) , then (vec(a) xx vec(b))/(|vec(a) xx vec(b)|) + (vec(b) xx vec(a))/(|vec(b) xx vec(a)|) =