Home
Class 11
MATHS
For any two vectors veca and vecb, show ...

For any two vectors `veca and vecb`, show that `(1+|veca|^(2))(1+|vecb|^(2))=|1-vec(a).vecb|^(2)+|veca+vecb+vecaxxvecb|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
LHS
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) I|15 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) II|17 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(b) II|11 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) III.|11 Videos

Similar Questions

Explore conceptually related problems

Find |veca-vecb| , if two vectors vecaandvecb are such that |veca|=2,|vecb|=3andveca*vecb=4 .

For any two vectors vecaandvecb , we always have |veca*vecb|le|veca||vecb| (Cauchy- Schwartz inequality).

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

For any three vectors veca,vecb,vec(c) prove that [vecbxxvec(c)" "vec(c)xxveca" "vecaxxvecb]=[vec(a)" "vecb" "vec(c)]^(2)

If |veca|=2, |vecb|=3 and |2veca-vecb|=5 , then |2veca+vecb| equals

Find |veca|and|vecb| , if (veca+vecb)*(veca-vecb)=8and|veca|=8|vecb| .