Home
Class 11
MATHS
Find t, for which the vectors 2bar(i) - ...

Find t, for which the vectors `2bar(i) - 3bar(j) + bar(k), bar(i) + 2bar(j) -3bar(k) , bar(j) - tbar(k)` are coplanar.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) II|17 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) III|11 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(b) III|8 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) III.|11 Videos

Similar Questions

Explore conceptually related problems

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

Find the volume of the parallelopiped having co-tenninus edges are represented by the vectors 2 bar(i) - 3bar(j) + bar(k), bar(i) -bar(j) +2bar(k), 2bar(i) + bar(j) -bar(k) .

Show that the four points with position vectors 3bar(i)+5bar(j), 3bar(j)-5k, 5bar(i)-19bar(j)-3bar(k), 6bar(i)-5bar(j) are non coplanar.

If the vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) + 2bar(j)-3bar(k), bar(c ) = 3bar(i) + pbar(j) +5bar(k) are coplanar then find p.

Find the volume of the tetrahedron having the edges , bar(i) + bar(j) + bar(k), bar(i)-bar(j), bar(i) + 2bar(j) + bar(k) .

Find the value of [bar(i)+bar(j)+bar(k),bar(i)-bar(j),bar(i)+2bar(j)-bar(k)] .

Compute 2 bar(j) xx (3bar(i) - 4bar(k)) + (bar(i)+2bar(j)) xx bar(k) .

Find the vector area and area of the triangle with vertices bar(i) + bar(j)-bar(k), 2bar(i)- 3bar(j) + bar(k), 3 bar(i) + bar(j)- 2bar(k) .

Let bar(a)=bar(i)+bar(j), bar(b)=bar(j)+bar(k) and bar(c)=alphabar(a)+betabar(b) . If the vectors bar(i)-2bar(j)+bar(k), 3bar(i)+2bar(j)-bar(k) and bar(c) are coplanar then alpha/beta equals