Home
Class 11
MATHS
if veca=veci-2vecj+veck, vecb=2veci+vecj...

if `veca=veci-2vecj+veck, vecb=2veci+vecj+veck, vec(c)=veci+2vecj-veck`, then find `vecaxx (vecbxxvecc) and |vecaxx(vecbxxvecc)|`.

Text Solution

Verified by Experts

The correct Answer is:
`sqrt(174)`.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS|46 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) II|17 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) III.|11 Videos

Similar Questions

Explore conceptually related problems

If veca=2veci-vecj+veck and vecb=veci-3vecj-5veck , then find |vecaxxvecb| .

If veca=veci-2vecj-3veck,vecb=2veci+vecj-veck,vec(c)=i+3vecj-2veck , then compute veca . (vecbxxvec(c)) .

If veca=2veci-3vecj+veck and vecb=veci+4vecj-2veck , then find (veca+vecb)xx(veca-vecb) .

Compute [veci-vecjvecj-veckveck-veci]

If the vectors veca=2veci-vecj+veck,vecb=veci+2vecj-3veck and vecc=3veci+pvecj+5veck are coplanar, then find p.

Prove that the vectors vec(a)=2veci-vecj+veck,vecb=veci-3vecj-5veck and vecc=3veci-4vecj-4veck are coplanar.

If veca=veci-2vecj-3veck,vecb=2veci+vecj-veck and vec(c)=veci+3vecj-2veck , verify that vecaxx(vecbxxvec(c))ne(vecaxxvecb)xxvec(c) .