Home
Class 11
MATHS
Let veca=veci-veck,vecb=x veci+vecj+(1-x...

Let `veca=veci-veck,vecb=x veci+vecj+(1-x)veck and vec(c)=yveci+xvecj+(1+x-y)veck`, prove that the scalar triple product `[veca" "vecb" "vec(c)]` is independent of both x and y.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS|46 Videos
  • PRODUCT OF VECTORS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 5(c) II|17 Videos
  • PAIR OF STRAIGHT LINES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 4(c) III. |3 Videos
  • PROPERTIES OF TRIANGLES

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 10(b) ) III.|11 Videos

Similar Questions

Explore conceptually related problems

If the vectors veca=2veci-vecj+veck,vecb=veci+2vecj-3veck and vecc=3veci+pvecj+5veck are coplanar, then find p.

If veca=veci-2vecj-3veck,vecb=2veci+vecj-veck and vec(c)=veci+3vecj-2veck , verify that vecaxx(vecbxxvec(c))ne(vecaxxvecb)xxvec(c) .

Prove that the vectors vec(a)=2veci-vecj+veck,vecb=veci-3vecj-5veck and vecc=3veci-4vecj-4veck are coplanar.

Let veca=2veci+3vecj+veck,vecb=4veci+vecj and vec(c)=veci-3vecj-7veck . Find the vector vecr such that vecr.veca=9,vecr.vecb=7 and vecr.vec(c)=6 .

If veca=2veci+3vecj+4veck,vecb=veci+vecj-veck and vec(c)=veci-vecj+veck , then compute vecaxx(vecbxxvec(c)) and verify that it is perpendicular to veca .

If veca=veci-2vecj-3veck,vecb=2veci+vecj-veck,vec(c)=i+3vecj-2veck , then compute veca . (vecbxxvec(c)) .

If veca=2veci-vecj+veck and vecb=veci-3vecj-5veck , then find |vecaxxvecb| .