Home
Class 11
MATHS
Prove that Cot^(-1)9+"Cosec"^(-1) (sqrt(...

Prove that `Cot^(-1)9+"Cosec"^(-1) (sqrt(41))/4 = (pi)/4`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISES ( EXERCISE - 8(a) III).|22 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS|32 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SOLVED PROBLEMS|32 Videos
  • HYPERBOLIC FUNCTIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 9(a)|10 Videos
  • LIMITS AND CONTINUITY

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise 8(e)|12 Videos

Similar Questions

Explore conceptually related problems

sec^(-1)(4)+cosec^(-1)(4)=(pi)/2

Prove that int_(0)^(1) log(sqrt(1-x)+sqrt(1+x))dx = (1)/(2) log 2 + (pi)/(4) - (1)/(2)

Prove that 1+cot^(2) theta = cosec^(2) theta

The number of solution of the equation Tan^(-1) sqrt(x^(2)+x)+"Cosec"^(-1) sqrt(1-x^(2)-x)=(pi)/(2) is

Prove that sqrt(3)"cosec"20^(@)-"sec"20^(@) =4 .

Prove that sqrt3 csc 20 ^(@)- sec 20^(@)=4

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x =1/(sqrt(2))ltxle1

The number of real solutions of tan^(-1)sqrt(x^(2)+x)+ cosec^(-1)sqrt(1-x^(2)-x)=pi/2 is