Home
Class 9
MATHS
Factorise : a b^(2) - (a-1) b-1....

Factorise :
`a b^(2) - (a-1) b-1`.

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( ab^2 - (a-1)b - 1 \), we can follow these steps: ### Step 1: Rewrite the expression Start with the expression: \[ ab^2 - (a-1)b - 1 \] Distributing the negative sign in the second term gives: \[ ab^2 - ab + b - 1 \] ### Step 2: Group the terms Now, we can group the terms in pairs: \[ (ab^2 - ab) + (b - 1) \] ### Step 3: Factor out the common terms From the first group \( ab^2 - ab \), we can factor out \( ab \): \[ ab(b - 1) \] From the second group \( b - 1 \), we can factor out \( 1 \): \[ 1(b - 1) \] Now we can rewrite the expression as: \[ ab(b - 1) + 1(b - 1) \] ### Step 4: Factor out the common binomial Now, we notice that \( (b - 1) \) is common in both terms: \[ (b - 1)(ab + 1) \] ### Final Answer Thus, the factorised form of the expression \( ab^2 - (a-1)b - 1 \) is: \[ (b - 1)(ab + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(6) - b^(6)

Factorise : a^(2) - b^(2) - 2b -1

Factorise : ab^2 - (a-c) b-c

Factorise : 3a^(2) -1-2a

Factorise 98 ( a+b)^(2) - 2

Factorise : 7b^(2) - 8b +1

Factorise : (a+b)^(3) -a-b

Factorise : x^(2) - (b -2) x-2b

Factorise : 1- 100a^2

Factorise : 8a b^(2) + 12 a^(2)b