Home
Class 9
MATHS
Factorise : a^(2) + (1)/(a^(2)) + 2 - ...

Factorise :
`a^(2) + (1)/(a^(2)) + 2 - 5a - (5)/(a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 + \frac{1}{a^2} + 2 - 5a - \frac{5}{a} \), we will follow these steps: ### Step 1: Rewrite the expression Start with the given expression: \[ a^2 + \frac{1}{a^2} + 2 - 5a - \frac{5}{a} \] ### Step 2: Combine terms Notice that \( a^2 + \frac{1}{a^2} + 2 \) can be rewritten using the identity \( x^2 + 2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 \) where \( x = a \): \[ a^2 + 2 + \frac{1}{a^2} = \left(a + \frac{1}{a}\right)^2 \] Thus, we can rewrite the expression as: \[ \left(a + \frac{1}{a}\right)^2 - 5a - \frac{5}{a} \] ### Step 3: Factor out common terms Next, we can factor out \( -5 \) from the terms \( -5a - \frac{5}{a} \): \[ \left(a + \frac{1}{a}\right)^2 - 5\left(a + \frac{1}{a}\right) \] ### Step 4: Let \( x = a + \frac{1}{a} \) Let \( x = a + \frac{1}{a} \). Then the expression simplifies to: \[ x^2 - 5x \] ### Step 5: Factor the quadratic expression Now we can factor the quadratic expression: \[ x^2 - 5x = x(x - 5) \] ### Step 6: Substitute back for \( x \) Substituting back \( x = a + \frac{1}{a} \): \[ (a + \frac{1}{a})(a + \frac{1}{a} - 5) \] ### Final Answer Thus, the factorised form of the expression is: \[ \left(a + \frac{1}{a}\right)\left(a + \frac{1}{a} - 5\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2) + (1)/(a^(2)) - 18

Factorise : x^(2) + (1)/(x^(2)) - 3

Factorise : x^(2) + (1)/(x^(2)) -11

Factorise : 9a^(2) + (1)/(9a^(2)) - 2-12a + (4)/(3a)

Factorise : 4x^(2) + (1)/(4x^(2)) + 1

Factorise : 3a^(2) -1-2a

Factorise x^(2) + (1)/(x^(2)) + 2- 5x -( 5)/(x)

Factorise : x^(2) - 5x -6

Factorise : 1- 100a^2

Factorise : a^2 + 5a + 6