Home
Class 9
MATHS
Factorise : 7-12x - 4x^(2)...

Factorise :
`7-12x - 4x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 7 - 12x - 4x^2 \), we will follow these steps: ### Step 1: Rearrange the expression We can rewrite the expression in standard form, which is usually in descending order of powers of \( x \): \[ -4x^2 - 12x + 7 \] ### Step 2: Identify coefficients In the expression \(-4x^2 - 12x + 7\), we identify: - \( a = -4 \) (coefficient of \( x^2 \)) - \( b = -12 \) (coefficient of \( x \)) - \( c = 7 \) (constant term) ### Step 3: Calculate the product \( ac \) Next, we calculate the product \( ac \): \[ ac = (-4) \times 7 = -28 \] ### Step 4: Split the middle term We need to find two numbers that multiply to \( ac = -28 \) and add to \( b = -12 \). The numbers that satisfy this condition are \( -14 \) and \( 2 \) because: \[ -14 + 2 = -12 \quad \text{and} \quad -14 \times 2 = -28 \] ### Step 5: Rewrite the expression Now, we can rewrite the expression by splitting the middle term: \[ -4x^2 - 14x + 2x + 7 \] ### Step 6: Group the terms Next, we group the terms: \[ (-4x^2 - 14x) + (2x + 7) \] ### Step 7: Factor out the common terms Now, we factor out the common factors from each group: \[ -2x(2x + 7) + 1(2x + 7) \] ### Step 8: Factor by grouping Now we can factor out the common binomial factor \( (2x + 7) \): \[ (2x + 7)(-2x + 1) \] ### Step 9: Write the final factorised form Thus, the factorised form of the expression \( 7 - 12x - 4x^2 \) is: \[ (2x + 7)(1 - 2x) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 5 + 7x - 6x^(2)

Factorise : 12 - (x+x^(2)) (8-x-x^(2)) .

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

Factorise : (v) x^4 - 5x^(2) - 36

Factorise : 4x^(4) - x^(2) - 12x - 36

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise : 2x^3 b^2 -4x^(5) b^(4)

Factorise : 3x^(2) - 11x - 4

Factorise : x^(4) + x^(2) +1

Factorise : x^2 + 4x +3