Home
Class 9
MATHS
Factorise : 48x^(3) - 27x...

Factorise :
`48x^(3) - 27x`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(48x^3 - 27x\), we will follow these steps: ### Step 1: Identify the common factor First, we need to identify the common factor in the terms \(48x^3\) and \(-27x\). Both terms have a common factor of \(3x\). ### Step 2: Factor out the common factor Now, we will factor out \(3x\) from the expression: \[ 48x^3 - 27x = 3x(16x^2 - 9) \] ### Step 3: Recognize the difference of squares Next, we observe that \(16x^2 - 9\) is a difference of squares. We can rewrite it as: \[ 16x^2 - 9 = (4x)^2 - 3^2 \] ### Step 4: Apply the difference of squares formula We can apply the difference of squares formula, which states that \(a^2 - b^2 = (a + b)(a - b)\). Here, \(a = 4x\) and \(b = 3\): \[ (4x)^2 - 3^2 = (4x + 3)(4x - 3) \] ### Step 5: Write the final factorised form Now, substituting back into our expression, we have: \[ 48x^3 - 27x = 3x(4x + 3)(4x - 3) \] Thus, the factorised form of \(48x^3 - 27x\) is: \[ \boxed{3x(4x + 3)(4x - 3)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 3x^(5) y - 27 x^(4) y^(2) + 12x^(3) y^(3)

Factorise : 8a^(3) - 27b^(3)

Factorise : (i) 6x^(3) - 8x^(2)

Factorise : a^(3) - 27

Factorise : x^(2) - x - 72

Factorise : a- 3b +a^(3) - 27b^(3)

Factorise : (x-y)^(3) - 8x^(3)

Factorise : 16 x^(2) - 8x - 3

Factorise : 4(x+y)^(2) - 3(x+y)

Factorise : a^(3) + 27b^(3)