Home
Class 9
MATHS
Factorise : 16x^(2) - y^(2) + 4yz - 4z...

Factorise :
`16x^(2) - y^(2) + 4yz - 4z^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 16x^2 - y^2 + 4yz - 4z^2 \), we can follow these steps: ### Step 1: Rearrange the expression We start by rearranging the terms for clarity: \[ 16x^2 - (y^2 - 4yz + 4z^2) \] ### Step 2: Recognize the perfect square The expression \( y^2 - 4yz + 4z^2 \) can be recognized as a perfect square trinomial. It can be factored as: \[ y^2 - 4yz + 4z^2 = (y - 2z)^2 \] ### Step 3: Substitute back into the expression Now substitute the factored form back into the expression: \[ 16x^2 - (y - 2z)^2 \] ### Step 4: Apply the difference of squares formula The expression \( 16x^2 - (y - 2z)^2 \) is a difference of squares, which can be factored using the formula \( a^2 - b^2 = (a - b)(a + b) \). Here, \( a = 4x \) and \( b = (y - 2z) \): \[ 16x^2 - (y - 2z)^2 = (4x - (y - 2z))(4x + (y - 2z)) \] ### Step 5: Simplify the factors Now, simplify the factors: \[ (4x - y + 2z)(4x + y - 2z) \] ### Final Answer Thus, the factorised form of the expression \( 16x^2 - y^2 + 4yz - 4z^2 \) is: \[ (4x - y + 2z)(4x + y - 2z) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (vi) x^(2) - y^(2) - 2yz - z^(2)

Factorise : (1-x^(2))(1-y^(2)) + 4xy

Factorise : (v) x^(2) - 2xy + y^(2) - z^(2)

Factorise 81 x ^(4) - 16y^(4)

Factorise : 4x^2 - 81 y^2

Factorise : x^(2) + 5xy + 4y^(2)

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise 16x^(4)-81y^(4) .

Factorise : 4x^(2) - 12ax - y^(2) - z^(2) - 2yz + 9a^(2)

Factorise : x^(2) (a-b) - y^(2) (a-b) + z^(2) (a-b)