Home
Class 9
MATHS
Factorise : (1-x^(2))(1-y^(2)) + 4xy...

Factorise :
`(1-x^(2))(1-y^(2)) + 4xy`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((1 - x^2)(1 - y^2) + 4xy\), we can follow these steps: ### Step 1: Expand the expression We start by expanding the first part of the expression: \[ (1 - x^2)(1 - y^2) = 1 - y^2 - x^2 + x^2y^2 \] Now, we can rewrite the entire expression: \[ 1 - y^2 - x^2 + x^2y^2 + 4xy \] ### Step 2: Rearrange the terms Next, we rearrange the terms for clarity: \[ 1 - x^2 - y^2 + x^2y^2 + 4xy \] ### Step 3: Group the terms Now, we group the terms that can be combined: \[ 1 + (x^2y^2 + 4xy) - (x^2 + y^2) \] ### Step 4: Factor the quadratic expression We can factor the expression \(x^2y^2 + 4xy\) as follows: \[ x^2y^2 + 4xy = (xy)^2 + 4xy = xy(xy + 4) \] ### Step 5: Combine the expression Now, we can rewrite the expression: \[ 1 + xy(xy + 4) - (x^2 + y^2) \] ### Step 6: Recognize the perfect square Notice that \(x^2 + y^2 - 2xy\) can be rewritten as \((x - y)^2\). Thus, we can express the entire expression as: \[ 1 + (xy + 2)^2 - (x - y)^2 \] ### Step 7: Apply the difference of squares Now we can apply the difference of squares formula: \[ a^2 - b^2 = (a + b)(a - b) \] Let \(a = xy + 2\) and \(b = x - y\): \[ (1 + (xy + 2) + (x - y))(1 + (xy + 2) - (x - y)) \] ### Final Expression Thus, the factorised form of the original expression is: \[ (1 + xy + 2 + x - y)(1 + xy + 2 - (x - y)) \] This simplifies to: \[ (3 + xy + x - y)(3 + xy - x + y) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(2) + (1)/(x^(2)) - 3

Factorise : 2x^(2) + xy - 6y^(2)

Factorise : x^(2) + (1)/(x^(2)) -11

Factorise : 4x^(2) + (1)/(4x^(2)) + 1

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise : x^(2) + 5xy + 4y^(2)

Factorise : (vii) x^(2) y^(2) - 3xy - 40

Factorise: x^(4) + x^(2)+1

Factorise : (ii) x^(2) y - xy^(2) + 5x - 5y

Factorise : (vi) ab (x^(2) + y^(2) ) - xy (a^(2) + b^(2) )