Home
Class 9
MATHS
Factorise : a^(3) + 27b^(3)...

Factorise :
`a^(3) + 27b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^3 + 27b^3 \), we can follow these steps: ### Step 1: Recognize the form of the expression The expression \( a^3 + 27b^3 \) can be recognized as a sum of cubes. We can rewrite \( 27b^3 \) as \( (3b)^3 \). Thus, we have: \[ a^3 + (3b)^3 \] ### Step 2: Apply the sum of cubes formula The sum of cubes can be factored using the identity: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] In our case, let \( x = a \) and \( y = 3b \). Therefore, we can apply the formula: \[ a^3 + (3b)^3 = (a + 3b)(a^2 - a(3b) + (3b)^2) \] ### Step 3: Simplify the expression Now we need to simplify the second factor: 1. \( a^2 \) remains as it is. 2. \( -a(3b) = -3ab \). 3. \( (3b)^2 = 9b^2 \). Putting it all together, we have: \[ a^2 - 3ab + 9b^2 \] ### Step 4: Write the final factored form Combining everything, the complete factorization of \( a^3 + 27b^3 \) is: \[ a^3 + 27b^3 = (a + 3b)(a^2 - 3ab + 9b^2) \] ### Final Answer: Thus, the factorised form of \( a^3 + 27b^3 \) is: \[ (a + 3b)(a^2 - 3ab + 9b^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 8a^(3) - 27b^(3)

Factorise : a^(6) + 27b^(3)

Factorise : 1-8a^(3)

Factorise : (i) a^(3)+27b^(3)+8c^(3)-18abc " " (ii) 2sqrt(2)a^(3)+8b^(3)-27c^(3)+18sqrt(2)abc (iii) x^(3)+y^(3)-12xy+64 " " (iv) 125-8x^(3)-27y^(3)=90xy .

Factorise : a^(3) -(27/a^(3))

Factorise : 50a^(3) - 2a

Factorise : 48x^(3) - 27x

Factorise : a-b - a^(3) + b^(3)

Factorise : a^(3) + b^(3) + a + b .

Factorise : 8a^(3) - b^(3) - 4ax + 2bx