Home
Class 9
MATHS
Factorise : 16a^(4) + 54a...

Factorise :
`16a^(4) + 54a`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 16a^4 + 54a \), we will follow these steps: ### Step 1: Identify the common factor First, we need to identify the common factor in the terms \( 16a^4 \) and \( 54a \). **Common Factor:** The common factor is \( 2a \). ### Step 2: Factor out the common factor Now, we will factor out \( 2a \) from the expression: \[ 16a^4 + 54a = 2a(8a^3 + 27) \] ### Step 3: Recognize the sum of cubes Next, we notice that \( 8a^3 + 27 \) can be expressed as a sum of cubes. Specifically, we can write: \[ 8a^3 = (2a)^3 \quad \text{and} \quad 27 = 3^3 \] So, we have: \[ 8a^3 + 27 = (2a)^3 + 3^3 \] ### Step 4: Apply the sum of cubes formula We can use the sum of cubes formula, which states: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] In our case, \( a = 2a \) and \( b = 3 \). Applying the formula: \[ (2a)^3 + 3^3 = (2a + 3)((2a)^2 - (2a)(3) + 3^2) \] ### Step 5: Simplify the expression Now, we simplify \( (2a)^2 - (2a)(3) + 3^2 \): \[ (2a)^2 = 4a^2, \quad (2a)(3) = 6a, \quad 3^2 = 9 \] Thus, we have: \[ (2a)^2 - (2a)(3) + 3^2 = 4a^2 - 6a + 9 \] ### Step 6: Combine everything Putting it all together, we substitute back into our factorization: \[ 16a^4 + 54a = 2a(2a + 3)(4a^2 - 6a + 9) \] ### Final Answer The factorized form of \( 16a^4 + 54a \) is: \[ \boxed{2a(2a + 3)(4a^2 - 6a + 9)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(4) -1

Factorise : a^(4) - 343 a

Factorise : 16a^(4) - b^(4) .

Factorise : 16-9x^2

Factorise : 3-a(4+7a)

Factorise : (iv) a^4 - 625

Factorise : 16 x^(2) - 8x - 3

Factorise : 16x^(2) - y^(2) + 4yz - 4z^(2)

Factorise : a^(4) - 7a^(2) + 1

Factorise : (a^(2) - a)(4a^(2) -4a - 5) - 6