Home
Class 9
MATHS
Factorise : 125a^(3) + (1)/(8)...

Factorise :
`125a^(3) + (1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 125a^3 + \frac{1}{8} \), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite \( 125a^3 \) and \( \frac{1}{8} \) in terms of cubes: \[ 125a^3 = (5a)^3 \quad \text{and} \quad \frac{1}{8} = \left(\frac{1}{2}\right)^3 \] So, we can rewrite the expression as: \[ (5a)^3 + \left(\frac{1}{2}\right)^3 \] ### Step 2: Apply the sum of cubes formula The sum of cubes can be factored using the formula: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] Here, let \( x = 5a \) and \( y = \frac{1}{2} \). ### Step 3: Substitute \( x \) and \( y \) into the formula Using the sum of cubes formula, we substitute \( x \) and \( y \): \[ (5a + \frac{1}{2})\left((5a)^2 - (5a)(\frac{1}{2}) + \left(\frac{1}{2}\right)^2\right) \] ### Step 4: Simplify the expression Now, we simplify the second part: 1. Calculate \( (5a)^2 = 25a^2 \) 2. Calculate \( (5a)(\frac{1}{2}) = \frac{5a}{2} \) 3. Calculate \( \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) Putting it all together: \[ (5a + \frac{1}{2})\left(25a^2 - \frac{5a}{2} + \frac{1}{4}\right) \] ### Step 5: Write the final factorised form Thus, the factorised form of \( 125a^3 + \frac{1}{8} \) is: \[ (5a + \frac{1}{2})\left(25a^2 - \frac{5a}{2} + \frac{1}{4}\right) \] ### Summary of the factorised expression The final answer is: \[ (5a + \frac{1}{2})\left(25a^2 - \frac{5a}{2} + \frac{1}{4}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (i) 125a^(3)+(1)/(8) " " (ii) 8a^(3)-27b^(3)

Factorise : 50a^(3) - 2a

Factorise : 2a^(3) - 50a

Factorise : 1-8a^(3)

Factorise : a^(3) - 27

Factorise : a^(3) + 0.064

Factorise : 1- 100a^2

Factorise : 8a^(3) - 27b^(3)

Factorise : a^(4) -1

Factorise : a^(3) + 27b^(3)