Home
Class 9
MATHS
Factorise : a^(3) + b^(3) + a + b....

Factorise :
`a^(3) + b^(3) + a + b`.

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^3 + b^3 + a + b \), we can follow these steps: ### Step 1: Recognize the sum of cubes We know that \( a^3 + b^3 \) can be factored using the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] So, we can rewrite our expression as: \[ a^3 + b^3 + a + b = (a + b)(a^2 - ab + b^2) + a + b \] ### Step 2: Factor out the common term Notice that both terms in the expression now contain \( (a + b) \): \[ = (a + b)(a^2 - ab + b^2) + 1(a + b) \] We can factor out \( (a + b) \): \[ = (a + b)(a^2 - ab + b^2 + 1) \] ### Step 3: Write the final factorized form Thus, the factorized form of the expression \( a^3 + b^3 + a + b \) is: \[ \boxed{(a + b)(a^2 - ab + b^2 + 1)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(3) + 27b^(3)

Factorise : 8a^(3) - 27b^(3)

Factorise : 64 - a^(3)b^(3)

Factorise : a^(6) + 27b^(3)

Factorise : a^(6) - b^(6)

Factorise : 4a^(2)b - 9b^(3)

Factorise : a-b - a^(3) + b^(3)

Factorise : 8a^(3) - b^(3) - 4ax + 2bx

Factorise : 16a^(4) - b^(4) .

Factorise : a^(3) - 27b^(3) + 2a^(2)b - 6ab^(2)