Home
Class 9
MATHS
Factorise : 8a^(3) - 27b^(3)...

Factorise :
`8a^(3) - 27b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(8a^3 - 27b^3\), we can follow these steps: ### Step 1: Identify the cubes We recognize that \(8a^3\) and \(27b^3\) are both perfect cubes: - \(8a^3 = (2a)^3\) - \(27b^3 = (3b)^3\) ### Step 2: Apply the difference of cubes formula The difference of cubes formula states that: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] In our case, we can let: - \(x = 2a\) - \(y = 3b\) ### Step 3: Substitute into the formula Using the difference of cubes formula, we substitute \(x\) and \(y\): \[ 8a^3 - 27b^3 = (2a)^3 - (3b)^3 = (2a - 3b)((2a)^2 + (2a)(3b) + (3b)^2) \] ### Step 4: Simplify the expression Now we simplify the second part of the expression: - \((2a)^2 = 4a^2\) - \((2a)(3b) = 6ab\) - \((3b)^2 = 9b^2\) Putting it all together, we have: \[ (2a - 3b)(4a^2 + 6ab + 9b^2) \] ### Final Answer Thus, the factorised form of \(8a^3 - 27b^3\) is: \[ (2a - 3b)(4a^2 + 6ab + 9b^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 1-8a^(3)

Factorise : 48x^(3) - 27x

Factorise : a^(3) - 27b^(3) + 2a^(2)b - 6ab^(2)

Factorise : a^(3) - 27

Factorise : a^(3) + 27b^(3)

Factorise : 8a^(3) - b^(3) - 4ax + 2bx

Factorise : a^(3) -(27/a^(3))

Factorise : a- 3b +a^(3) - 27b^(3)

Factorise : a^(6) + 27b^(3)

Factorise : (i) a^(3)+27b^(3)+8c^(3)-18abc " " (ii) 2sqrt(2)a^(3)+8b^(3)-27c^(3)+18sqrt(2)abc (iii) x^(3)+y^(3)-12xy+64 " " (iv) 125-8x^(3)-27y^(3)=90xy .