Home
Class 9
MATHS
Factorise : 2a^(7) - 128a...

Factorise :
`2a^(7) - 128a`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 2a^7 - 128a \), we can follow these steps: ### Step 1: Identify the common factor First, we observe that both terms in the expression \( 2a^7 \) and \( -128a \) have a common factor. The common factor is \( 2a \). ### Step 2: Factor out the common factor We factor out \( 2a \) from the expression: \[ 2a^7 - 128a = 2a(a^6 - 64) \] ### Step 3: Recognize the difference of squares Next, we notice that \( 64 \) can be expressed as \( 8^2 \) (since \( 64 = 8^2 \)). Thus, we can rewrite \( a^6 - 64 \) as a difference of squares: \[ a^6 - 64 = a^6 - 8^2 \] ### Step 4: Apply the difference of squares formula Using the difference of squares formula \( x^2 - y^2 = (x - y)(x + y) \), we can factor \( a^6 - 8^2 \): \[ a^6 - 8^2 = (a^3 - 8)(a^3 + 8) \] ### Step 5: Factor further using the sum and difference of cubes Now we can factor \( a^3 - 8 \) and \( a^3 + 8 \) using the sum and difference of cubes formulas: 1. **For \( a^3 - 8 \)** (which is \( a^3 - 2^3 \)): \[ a^3 - 2^3 = (a - 2)(a^2 + 2a + 4) \] 2. **For \( a^3 + 8 \)** (which is \( a^3 + 2^3 \)): \[ a^3 + 2^3 = (a + 2)(a^2 - 2a + 4) \] ### Step 6: Combine all factors Putting it all together, we have: \[ 2a(a^6 - 64) = 2a((a - 2)(a^2 + 2a + 4)((a + 2)(a^2 - 2a + 4))) \] Thus, the complete factorization of \( 2a^7 - 128a \) is: \[ 2a(a - 2)(a + 2)(a^2 + 2a + 4)(a^2 - 2a + 4) \] ### Final Answer: \[ 2a(a - 2)(a + 2)(a^2 + 2a + 4)(a^2 - 2a + 4) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 2a^(3) - 50a

Factorise : 50a^(3) - 2a

Factorise : 3a^(2) -1-2a

Factorise : (i) a^(2) - 23 a + 42 .

Factorise : x^(2) - 25

Factorise : 3-a(4+7a)

Factorise : 25a^2 - 36b^2

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : (ii) a^(2) - 23 a - 108

Factorise : 2a^(2) + 7a + 6