Home
Class 9
MATHS
Factorise : a^(2) + (1)/(a^(2)) - 18...

Factorise :
`a^(2) + (1)/(a^(2)) - 18`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 + \frac{1}{a^2} - 18 \), we can follow these steps: ### Step 1: Rewrite the expression First, we rewrite the expression in a more manageable form: \[ a^2 + \frac{1}{a^2} - 18 \] ### Step 2: Combine terms We can consider \( a^2 + \frac{1}{a^2} \) as a single term. To facilitate the factorization, we can express \( -18 \) as \( -2 - 16 \): \[ a^2 + \frac{1}{a^2} - 2 - 16 \] ### Step 3: Recognize a perfect square Notice that \( a^2 + \frac{1}{a^2} - 2 \) can be rewritten using the identity \( x^2 + y^2 - 2xy = (x - y)^2 \): \[ a^2 + \frac{1}{a^2} - 2 = \left(a - \frac{1}{a}\right)^2 \] Thus, we can rewrite the expression as: \[ \left(a - \frac{1}{a}\right)^2 - 16 \] ### Step 4: Apply the difference of squares Now, we can recognize this as a difference of squares, which follows the identity \( x^2 - y^2 = (x - y)(x + y) \): Let \( x = a - \frac{1}{a} \) and \( y = 4 \): \[ \left(a - \frac{1}{a} - 4\right)\left(a - \frac{1}{a} + 4\right) \] ### Step 5: Final factorization Thus, the factorized form of the original expression is: \[ \left(a - \frac{1}{a} - 4\right)\left(a - \frac{1}{a} + 4\right) \] ### Summary of the factorization The final answer is: \[ \left(a - \frac{1}{a} - 4\right)\left(a - \frac{1}{a} + 4\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 9a^(2) + (1)/(9a^(2)) - 2-12a + (4)/(3a)

Factorise : x^(2) + (1)/(x^(2)) -11

Factorise : x^(2) + (1)/(x^(2)) - 3

Factorise : a^(2) + (1)/(a^(2)) + 2 - 5a - (5)/(a) .

Factorise : 4x^(2) + (1)/(4x^(2)) + 1

Factorise : x^(2) - 25

Factorise : 3a^(2) -1-2a

Factorise : x^(2) + (1)/(4x^(2)) + 1 - 7x - (7)/(2x)

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : 6a^(2) - a - 15