Home
Class 9
MATHS
Factorise : a^(4) - 7a^(2) + 1...

Factorise :
`a^(4) - 7a^(2) + 1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^4 - 7a^2 + 1 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ a^4 - 7a^2 + 1 \] We can rewrite it by adding and subtracting \( 2a^2 \): \[ a^4 - 7a^2 + 2a^2 - 2a^2 + 1 \] This allows us to regroup the terms. ### Step 2: Group the terms Now, we can group the terms: \[ (a^4 + 1) + (2a^2 - 9a^2) \] This simplifies to: \[ a^4 + 1 - 9a^2 \] ### Step 3: Recognize the structure Next, we can recognize that \( a^4 \) can be expressed as \( (a^2)^2 \) and \( 9a^2 \) as \( (3a)^2 \): \[ (a^2)^2 - 9a^2 + 1 \] ### Step 4: Complete the square We can rewrite \( a^4 - 7a^2 + 1 \) as: \[ (a^2 + 1)^2 - (3a)^2 \] This is now in the form of \( A^2 - B^2 \), where \( A = a^2 + 1 \) and \( B = 3a \). ### Step 5: Apply the difference of squares formula Using the difference of squares formula \( A^2 - B^2 = (A + B)(A - B) \): \[ (a^2 + 1 + 3a)(a^2 + 1 - 3a) \] ### Step 6: Write the final factorised form Thus, we have: \[ (a^2 + 3a + 1)(a^2 - 3a + 1) \] ### Final Answer The factorised form of \( a^4 - 7a^2 + 1 \) is: \[ (a^2 + 3a + 1)(a^2 - 3a + 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(4) -1

Factorise : a^(6) - 7a^(3) - 8

Factorise : 16a^(4) - b^(4) .

Factorise : a^(2) - b^(2) - 2b -1

Factorise 32a^(4) - 8a^(2)

Factorise : 2a^(7) - 128a

Factorise : 5a^(2) - b^(2) - 4ab + 7a - 7b

Factorise : x^(4) + x^(2) +1

Factorise : (a^(2) - 3a)(a^(2) - 3a + 7) + 10

Factorise : (i) 10a^(4) x^(2) - 15a^(6) x^(4) + 20 a^(7) x^(5)