Home
Class 9
MATHS
Factorise : a^(3) + 3a^(2)b + 3ab^(2) ...

Factorise :
`a^(3) + 3a^(2)b + 3ab^(2) + 2b^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^3 + 3a^2b + 3ab^2 + 2b^3 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ a^3 + 3a^2b + 3ab^2 + 2b^3 \] We can split \( 2b^3 \) into \( b^3 + b^3 \): \[ a^3 + 3a^2b + 3ab^2 + b^3 + b^3 \] ### Step 2: Group the terms Now, we can group the first five terms: \[ (a^3 + 3a^2b + 3ab^2 + b^3) + b^3 \] ### Step 3: Recognize the identity Notice that the first four terms resemble the expansion of \( (a + b)^3 \): \[ a^3 + 3a^2b + 3ab^2 + b^3 = (a + b)^3 \] Thus, we can rewrite the expression as: \[ (a + b)^3 + b^3 \] ### Step 4: Apply the sum of cubes formula Now, we can use the identity for the sum of cubes, which states: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] In our case, let \( x = (a + b) \) and \( y = b \): \[ (a + b)^3 + b^3 = ((a + b) + b)((a + b)^2 - (a + b)b + b^2) \] ### Step 5: Simplify the expression Now simplify: \[ = (a + 2b)((a + b)^2 - (a + b)b + b^2) \] Calculating \( (a + b)^2 \): \[ = a^2 + 2ab + b^2 \] Now substituting back: \[ = (a + 2b)(a^2 + 2ab + b^2 - ab - b^2) \] This simplifies to: \[ = (a + 2b)(a^2 + ab) \] ### Final Factorised Form Thus, the final factorised form of the expression \( a^3 + 3a^2b + 3ab^2 + 2b^3 \) is: \[ (a + 2b)(a^2 + ab) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise 4 MARK QUESTIONS |10 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(3) b - a^(2) b^(2) - b^(3)

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)

Factorise : a^(3) + 27b^(3)

Factorise : 4a^(2)b - 9b^(3)

Factorise : 3a^(2) -1-2a

Factorise : (ii) 3a^(2) x - bx + 3a^(2) - b

Factorise : 6 + 7b - 3b^(2)

Factorise : a-b - a^(3) + b^(3)

Factorise : a^(3) + b^(3) + a + b .

Factorise : 64 - a^(3)b^(3)