Home
Class 9
MATHS
Factorise by grouping method : a^(2) ...

Factorise by grouping method :
`a^(2) + (1)/(a^(2)) - 2 - 3a + (3)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 + \frac{1}{a^2} - 2 - 3a + \frac{3}{a} \) by grouping, we will follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ a^2 + \frac{1}{a^2} - 2 - 3a + \frac{3}{a} \] ### Step 2: Group the terms Rearrange the expression to group similar terms together: \[ (a^2 - 3a - 2) + \left(\frac{1}{a^2} + \frac{3}{a}\right) \] ### Step 3: Simplify the first group The first group is \( a^2 - 3a - 2 \). We can factor this expression: 1. Find two numbers that multiply to \(-2\) (the constant term) and add to \(-3\) (the coefficient of \(a\)). The numbers are \(-4\) and \(1\). 2. Thus, we can write: \[ a^2 - 3a - 2 = (a - 4)(a + 1) \] ### Step 4: Simplify the second group Now, simplify the second group \( \frac{1}{a^2} + \frac{3}{a} \): 1. Rewrite it as: \[ \frac{1 + 3a}{a^2} \] ### Step 5: Combine the groups Now we can combine the two groups: \[ (a - 4)(a + 1) + \frac{1 + 3a}{a^2} \] ### Step 6: Factor out the common term Notice that both groups share a common factor of \( (a - 1/a) \): 1. Rewrite \( a - 1/a \) as \( a - \frac{1}{a} \). 2. The expression can be factored as: \[ (a - \frac{1}{a})(a - 3) \] ### Final Factorization Thus, the factorization of the given expression is: \[ \left(a - \frac{1}{a}\right)\left(a - 3\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Questions|40 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise by grouping method : a(a-4)-a + 4

Factorise by grouping method : a^(2) + b - ab -a

Factorise by grouping method : a^(3) + a - 3a^(2) - 3

Factorise by grouping method : y^(2) - (a+b)y + ab

Factorise by grouping method : a^(2) + 4b^(2) - 3a + 6b - 4ab

Factorise by grouping method : a^(4) - 2a^(3) - 4a + 8

Factorise by grouping method : a^(2)x^(2) + (a x^(2) + 1) x + a

Factorise by grouping method : ab(x^(2) + 1) + x(a^(2) + b^(2))

Factorise by grouping method : (2a-b)^(2) - 10a + 5b

Factorise by grouping method : 16(a + b)^(2) - 4a - 4b

ICSE-FACTORISATION-Exercise 5 (A)
  1. Factorise by taking out the common factors : 2(2x - 5y)(3x + 4y) - 6...

    Text Solution

    |

  2. Factorise by taking out the common factors : xy(3x^(2) - 2y^(2)) - y...

    Text Solution

    |

  3. Factorise by taking at the common factors: (i) ab(a^(2) + b^(2) -c^(...

    Text Solution

    |

  4. Factorise by taking out the common factors : 2x(a - b) + 3y(5a-5b) +...

    Text Solution

    |

  5. Factorise by grouping method : a^(3) + a - 3a^(2) - 3

    Text Solution

    |

  6. Factorise by grouping method : 16(a + b)^(2) - 4a - 4b

    Text Solution

    |

  7. Factorise by grouping method : a^(4) - 2a^(3) - 4a + 8

    Text Solution

    |

  8. Factorise : ab -2 b + a^2 - 2a

    Text Solution

    |

  9. Factorise by grouping method : ab(x^(2) + 1) + x(a^(2) + b^(2))

    Text Solution

    |

  10. Factorise by grouping method : a^(2) + b - ab -a

    Text Solution

    |

  11. Factorise : (v) (ax + by )^(2) + (bx - ay)^(2)

    Text Solution

    |

  12. Factorise by grouping method : a^(2)x^(2) + (a x^(2) + 1) x + a

    Text Solution

    |

  13. Factorise by grouping method : (2a-b)^(2) - 10a + 5b

    Text Solution

    |

  14. Factorise by grouping method : a(a-4)-a + 4

    Text Solution

    |

  15. Factorise by grouping method : y^(2) - (a+b)y + ab

    Text Solution

    |

  16. Factorise by grouping method : a^(2) + (1)/(a^(2)) - 2 - 3a + (3)/(...

    Text Solution

    |

  17. Factorise by grouping method : x^(2) + y^(2) + x + y + 2xy

    Text Solution

    |

  18. Factorise by grouping method : a^(2) + 4b^(2) - 3a + 6b - 4ab

    Text Solution

    |

  19. Factorise by grouping method : m(x-3y)^(2) + n(3y - x) + 5x - 15y

    Text Solution

    |

  20. Factorise by grouping method : x(6x - 5y) - 4(6x - 5y)^(2)

    Text Solution

    |