Home
Class 9
MATHS
Factorise by grouping method : x^(2)...

Factorise by grouping method :
`x^(2) + y^(2) + x + y + 2xy`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^2 + y^2 + x + y + 2xy \) by grouping method, follow these steps: ### Step 1: Rearrange the expression We can rearrange the given expression as follows: \[ x^2 + y^2 + 2xy + x + y \] ### Step 2: Identify a perfect square Notice that the first three terms \( x^2 + y^2 + 2xy \) can be recognized as a perfect square. Recall the formula: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Here, we can let \( a = x \) and \( b = y \). Thus, we can rewrite: \[ x^2 + y^2 + 2xy = (x + y)^2 \] ### Step 3: Substitute back into the expression Now we can substitute this back into our rearranged expression: \[ (x + y)^2 + x + y \] ### Step 4: Factor out the common term Notice that both terms \( (x + y)^2 \) and \( x + y \) have a common factor of \( (x + y) \). We can factor this out: \[ (x + y)((x + y) + 1) \] ### Final Answer Thus, the factorised form of the expression \( x^2 + y^2 + x + y + 2xy \) is: \[ (x + y)(x + y + 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Questions|40 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise by grouping method : y^(2) - (a+b)y + ab

Factorise by grouping method : a^(2)x^(2) + (a x^(2) + 1) x + a

Factorise by grouping method : x(6x - 5y) - 4(6x - 5y)^(2)

Factorise by grouping method : m(x-3y)^(2) + n(3y - x) + 5x - 15y

Factorise by grouping method : ab(x^(2) + 1) + x(a^(2) + b^(2))

Factorise completely : x^(2) + 6xy + 9y^(2) + x + 3y

Factorise : (ii) x^(2) y - xy^(2) + 5x - 5y

Add the following expressions using horizontal method : -x^(2)y + xy^(2) + 2xy , 3x^(2) y + 4xy^(2) + 5xy and 7x^(2)y - 10xy^(2) - xy

Factorise completely : 3x^(2) y + 11 xy + 6y

Factorise : -x^(2) y - x + 3xy + 3

ICSE-FACTORISATION-Exercise 5 (A)
  1. Factorise by taking out the common factors : 2(2x - 5y)(3x + 4y) - 6...

    Text Solution

    |

  2. Factorise by taking out the common factors : xy(3x^(2) - 2y^(2)) - y...

    Text Solution

    |

  3. Factorise by taking at the common factors: (i) ab(a^(2) + b^(2) -c^(...

    Text Solution

    |

  4. Factorise by taking out the common factors : 2x(a - b) + 3y(5a-5b) +...

    Text Solution

    |

  5. Factorise by grouping method : a^(3) + a - 3a^(2) - 3

    Text Solution

    |

  6. Factorise by grouping method : 16(a + b)^(2) - 4a - 4b

    Text Solution

    |

  7. Factorise by grouping method : a^(4) - 2a^(3) - 4a + 8

    Text Solution

    |

  8. Factorise : ab -2 b + a^2 - 2a

    Text Solution

    |

  9. Factorise by grouping method : ab(x^(2) + 1) + x(a^(2) + b^(2))

    Text Solution

    |

  10. Factorise by grouping method : a^(2) + b - ab -a

    Text Solution

    |

  11. Factorise : (v) (ax + by )^(2) + (bx - ay)^(2)

    Text Solution

    |

  12. Factorise by grouping method : a^(2)x^(2) + (a x^(2) + 1) x + a

    Text Solution

    |

  13. Factorise by grouping method : (2a-b)^(2) - 10a + 5b

    Text Solution

    |

  14. Factorise by grouping method : a(a-4)-a + 4

    Text Solution

    |

  15. Factorise by grouping method : y^(2) - (a+b)y + ab

    Text Solution

    |

  16. Factorise by grouping method : a^(2) + (1)/(a^(2)) - 2 - 3a + (3)/(...

    Text Solution

    |

  17. Factorise by grouping method : x^(2) + y^(2) + x + y + 2xy

    Text Solution

    |

  18. Factorise by grouping method : a^(2) + 4b^(2) - 3a + 6b - 4ab

    Text Solution

    |

  19. Factorise by grouping method : m(x-3y)^(2) + n(3y - x) + 5x - 15y

    Text Solution

    |

  20. Factorise by grouping method : x(6x - 5y) - 4(6x - 5y)^(2)

    Text Solution

    |