Home
Class 9
MATHS
Factorise by grouping method : m(x-3...

Factorise by grouping method :
`m(x-3y)^(2) + n(3y - x) + 5x - 15y`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( m(x - 3y)^2 + n(3y - x) + 5x - 15y \) using the grouping method, we can follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ m(x - 3y)^2 + n(3y - x) + 5x - 15y \] Notice that \( 3y - x \) can be rewritten as \( -(x - 3y) \). Therefore, we can rewrite the expression as: \[ m(x - 3y)^2 - n(x - 3y) + 5x - 15y \] ### Step 2: Factor out common terms Now, we can group the terms that contain \( (x - 3y) \): \[ m(x - 3y)^2 - n(x - 3y) + 5(x - 3y) \] This can be simplified to: \[ m(x - 3y)^2 + (5 - n)(x - 3y) \] ### Step 3: Factor out \( (x - 3y) \) Now we can factor out \( (x - 3y) \): \[ (x - 3y)(m(x - 3y) + (5 - n)) \] ### Step 4: Write the final factorised form Thus, the final factorised form of the expression is: \[ (x - 3y)(m(x - 3y) + 5 - n) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Questions|40 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise by grouping method : x^(2) + y^(2) + x + y + 2xy

Factorise by grouping method : y^(2) - (a+b)y + ab

Factorise by grouping method : x(6x - 5y) - 4(6x - 5y)^(2)

3y - 5x lt 15

Factorise : (3x - 2y)^(2) + 3(3x - 2y) - 10

Factorisation by grouping the terms: (x^2+3x)^2-5(x^2+3x)-y(x^2+3x)+5y

Factorisation by grouping the terms: (x^2+3x)^2-5(x^2+3x)-y(x^2+3x)+5y

Factorise completely : x^2 - y^2 - 3x - 3y

Factorise : (x-y)^(3) - 8x^(3)

Factorise completely : x^(2) + 6xy + 9y^(2) + x + 3y

ICSE-FACTORISATION-Exercise 5 (A)
  1. Factorise by taking out the common factors : 2(2x - 5y)(3x + 4y) - 6...

    Text Solution

    |

  2. Factorise by taking out the common factors : xy(3x^(2) - 2y^(2)) - y...

    Text Solution

    |

  3. Factorise by taking at the common factors: (i) ab(a^(2) + b^(2) -c^(...

    Text Solution

    |

  4. Factorise by taking out the common factors : 2x(a - b) + 3y(5a-5b) +...

    Text Solution

    |

  5. Factorise by grouping method : a^(3) + a - 3a^(2) - 3

    Text Solution

    |

  6. Factorise by grouping method : 16(a + b)^(2) - 4a - 4b

    Text Solution

    |

  7. Factorise by grouping method : a^(4) - 2a^(3) - 4a + 8

    Text Solution

    |

  8. Factorise : ab -2 b + a^2 - 2a

    Text Solution

    |

  9. Factorise by grouping method : ab(x^(2) + 1) + x(a^(2) + b^(2))

    Text Solution

    |

  10. Factorise by grouping method : a^(2) + b - ab -a

    Text Solution

    |

  11. Factorise : (v) (ax + by )^(2) + (bx - ay)^(2)

    Text Solution

    |

  12. Factorise by grouping method : a^(2)x^(2) + (a x^(2) + 1) x + a

    Text Solution

    |

  13. Factorise by grouping method : (2a-b)^(2) - 10a + 5b

    Text Solution

    |

  14. Factorise by grouping method : a(a-4)-a + 4

    Text Solution

    |

  15. Factorise by grouping method : y^(2) - (a+b)y + ab

    Text Solution

    |

  16. Factorise by grouping method : a^(2) + (1)/(a^(2)) - 2 - 3a + (3)/(...

    Text Solution

    |

  17. Factorise by grouping method : x^(2) + y^(2) + x + y + 2xy

    Text Solution

    |

  18. Factorise by grouping method : a^(2) + 4b^(2) - 3a + 6b - 4ab

    Text Solution

    |

  19. Factorise by grouping method : m(x-3y)^(2) + n(3y - x) + 5x - 15y

    Text Solution

    |

  20. Factorise by grouping method : x(6x - 5y) - 4(6x - 5y)^(2)

    Text Solution

    |