Home
Class 9
MATHS
Factorise : a^(2) - 3a - 40...

Factorise :
`a^(2) - 3a - 40`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 - 3a - 40 \), we will follow these steps: ### Step 1: Identify the expression We start with the expression: \[ a^2 - 3a - 40 \] ### Step 2: Split the middle term We need to find two numbers that multiply to \(-40\) (the constant term) and add up to \(-3\) (the coefficient of the middle term). The two numbers that satisfy this condition are \(-8\) and \(5\) because: \[ -8 \times 5 = -40 \quad \text{and} \quad -8 + 5 = -3 \] ### Step 3: Rewrite the expression Now we can rewrite the expression by splitting the middle term: \[ a^2 - 8a + 5a - 40 \] ### Step 4: Group the terms Next, we group the terms: \[ (a^2 - 8a) + (5a - 40) \] ### Step 5: Factor out the common terms Now, we factor out the common factors from each group: \[ a(a - 8) + 5(a - 8) \] ### Step 6: Factor out the common binomial Now we can factor out the common binomial \((a - 8)\): \[ (a - 8)(a + 5) \] ### Final Answer Thus, the factorised form of the expression \( a^2 - 3a - 40 \) is: \[ \boxed{(a - 8)(a + 5)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(3) - 27

Factorise : 3a^(2) - 5a + 2

Factorise : 3a^(2) -1-2a

Factorise : 2a^(3) - 50a

Factorise : 50a^(3) - 2a

Factorise : (i) a^(2) - ab - 3a + 3b

Factorise : 3x^(2) - 11x - 4

Factorise : 9a^(2) + 3a - 8b - 64b^(2)

Factorise : x^(2) - 3ax - 88a^(2)

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)