Home
Class 9
MATHS
Factorise : 6a^(2) - a - 15...

Factorise :
`6a^(2) - a - 15`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(6a^2 - a - 15\), we will follow these steps: ### Step 1: Identify the coefficients The given quadratic expression is \(6a^2 - a - 15\). Here, the coefficients are: - \(A = 6\) (coefficient of \(a^2\)) - \(B = -1\) (coefficient of \(a\)) - \(C = -15\) (constant term) ### Step 2: Calculate the product of \(A\) and \(C\) We need to find the product \(A \times C\): \[ A \times C = 6 \times (-15) = -90 \] ### Step 3: Find two numbers that multiply to \(A \times C\) and add to \(B\) We need to find two numbers \(x\) and \(y\) such that: - \(x \times y = -90\) - \(x + y = -1\) After testing possible pairs, we find: - \(x = 9\) and \(y = -10\) satisfy both conditions: - \(9 \times (-10) = -90\) - \(9 + (-10) = -1\) ### Step 4: Rewrite the middle term Now, we can rewrite the expression \(6a^2 - a - 15\) by splitting the middle term using \(9\) and \(-10\): \[ 6a^2 + 9a - 10a - 15 \] ### Step 5: Group the terms Next, we group the terms: \[ (6a^2 + 9a) + (-10a - 15) \] ### Step 6: Factor by grouping Now, we factor out the common factors from each group: - From the first group \(6a^2 + 9a\), we can factor out \(3a\): \[ 3a(2a + 3) \] - From the second group \(-10a - 15\), we can factor out \(-5\): \[ -5(2a + 3) \] ### Step 7: Combine the factors Now we have: \[ 3a(2a + 3) - 5(2a + 3) \] We can factor out the common binomial factor \((2a + 3)\): \[ (2a + 3)(3a - 5) \] ### Final Answer Thus, the factorised form of \(6a^2 - a - 15\) is: \[ (2a + 3)(3a - 5) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2) - 3a - 40

Factorise : a^(2) - 3a - 40

Factorise : 3a^(2) - 5a + 2

Factorise : 50a^(3) - 2a

Factorise : 2a^(3) - 50a

Factorise : 3a^(2) -1-2a

Factorise : x^(2) - 25

Factorise : 2a^(2) + 7a + 6

Factorise a^(2) + b- ab - a

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)