Home
Class 9
MATHS
Factorise : a(3a - 2)-1...

Factorise :
`a(3a - 2)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a(3a - 2) - 1 \), we will follow these steps: ### Step 1: Expand the expression First, we will distribute \( a \) into the bracket: \[ a(3a - 2) - 1 = 3a^2 - 2a - 1 \] ### Step 2: Rearrange the expression Next, we will rearrange the expression to make it easier to factor: \[ 3a^2 - 2a - 1 = 3a^2 - 3a + a - 1 \] ### Step 3: Group the terms Now, we will group the terms into two pairs: \[ (3a^2 - 3a) + (a - 1) \] ### Step 4: Factor out common terms from each group From the first group \( (3a^2 - 3a) \), we can factor out \( 3a \): \[ 3a(a - 1) + 1(a - 1) \] ### Step 5: Factor out the common binomial factor Now we can see that \( (a - 1) \) is a common factor: \[ (3a + 1)(a - 1) \] ### Final Answer Thus, the factorised form of the expression \( a(3a - 2) - 1 \) is: \[ (3a + 1)(a - 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 50a^(3) - 2a

Factorise : 1-8a^(3)

Factorise : 2a^(3) - 50a

Factorise : a^3 - a^2 - ab + a + b - 1

Factorise : (iii) 1-3a - 28 a^2

Factorise : a^(2) - 3a - 40

Factorise : a^(2) - 3a - 40

Factorise : 5 + 3a - 14a^(2)

Factorise : a^(3) + 2a^(2) - a-2

Factorise : a^(4) - 7a^(2) + 1