Home
Class 9
MATHS
Factorise : a^(2)b^(2) + 8ab - 9...

Factorise :
`a^(2)b^(2) + 8ab - 9`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2b^2 + 8ab - 9 \), we will follow these steps: ### Step 1: Identify the expression The given expression is: \[ a^2b^2 + 8ab - 9 \] This is a quadratic expression in terms of \( ab \). ### Step 2: Rewrite the middle term We need to split the middle term \( 8ab \) into two terms such that their product equals the product of the first term \( a^2b^2 \) and the last term \(-9\). We need two numbers that multiply to \( -9 \times 1 = -9 \) (since the coefficient of \( a^2b^2 \) is 1) and add up to \( 8 \). The numbers that satisfy this are \( 9 \) and \( -1 \). So, we can rewrite \( 8ab \) as: \[ 9ab - ab \] Thus, the expression becomes: \[ a^2b^2 + 9ab - ab - 9 \] ### Step 3: Group the terms Now, we will group the terms: \[ (a^2b^2 + 9ab) + (-ab - 9) \] ### Step 4: Factor out common terms from each group From the first group \( (a^2b^2 + 9ab) \), we can factor out \( ab \): \[ ab(ab + 9) \] From the second group \( (-ab - 9) \), we can factor out \(-1\): \[ -1(ab + 9) \] Now, we have: \[ ab(ab + 9) - 1(ab + 9) \] ### Step 5: Factor out the common binomial Now, we can see that \( (ab + 9) \) is common in both terms: \[ (ab + 9)(ab - 1) \] ### Final Answer Thus, the factorised form of the expression \( a^2b^2 + 8ab - 9 \) is: \[ (ab + 9)(ab - 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise a^(2)-9b^(2) .

Factorise : a^(2) - b^(2) - 2b -1

Factorise : 5a^(2) - b^(2) - 4ab + 7a - 7b

Factorise : 25a^(2) - 9b^(2)

Factorise : 4a^(2)b - 9b^(3)

Factorise : 3a^(2) b - 12 a^(2) - 9b + 36

Factorise : a^(2) + b^(2) - c^(2) - d^(2) + 2ab - 2cd

Factorise : (iv) ax^(2) + b^(2) y - ab^(2) - x^(2) y

Factorise : 16-9x^2

Factorise : a^(2) - b^(2) - (a+b)^(2)