Home
Class 9
MATHS
Factorise : 3-a(4+7a)...

Factorise :
`3-a(4+7a)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 3 - a(4 + 7a) \), we will follow these steps: ### Step 1: Distribute the negative sign and simplify Start by distributing \( -a \) into the parentheses \( (4 + 7a) \): \[ 3 - a(4 + 7a) = 3 - (4a + 7a^2) \] This simplifies to: \[ 3 - 4a - 7a^2 \] ### Step 2: Rearrange the expression Rearranging the terms gives us: \[ -7a^2 - 4a + 3 \] ### Step 3: Factor out the negative sign To make factoring easier, we can factor out \(-1\): \[ -(7a^2 + 4a - 3) \] ### Step 4: Factor the quadratic expression Now we need to factor the quadratic \( 7a^2 + 4a - 3 \). We look for two numbers that multiply to \( 7 \times -3 = -21 \) and add to \( 4 \). The numbers \( 7 \) and \( -3 \) work because: \[ 7 \times -3 = -21 \quad \text{and} \quad 7 + (-3) = 4 \] ### Step 5: Rewrite the middle term We can rewrite \( 7a^2 + 4a - 3 \) as: \[ 7a^2 + 7a - 3a - 3 \] ### Step 6: Group the terms Now, we group the terms: \[ (7a^2 + 7a) + (-3a - 3) \] ### Step 7: Factor by grouping Now we factor out the common factors from each group: \[ 7a(a + 1) - 3(a + 1) \] ### Step 8: Factor out the common binomial Now we can factor out the common binomial \( (a + 1) \): \[ (7a - 3)(a + 1) \] ### Step 9: Combine with the negative sign Finally, we include the negative sign we factored out earlier: \[ -(7a - 3)(a + 1) \] ### Final Answer Thus, the factorised form of the expression \( 3 - a(4 + 7a) \) is: \[ -(7a - 3)(a + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(4) -1

Factorise : a^(4) - 7a^(2) + 1

Factorise : 1-8a^(3)

Factorise : 4a^2 - 8ab

Factorise : a^(3) - 27

Factorise : a^(6) - 7a^(3) - 8

Factorise : (a^(2) - 3a)(a^(2) - 3a + 7) + 10

Factorise : 2a^(2) + 7a + 6

Factorise : (vii) 7a^(5) - 567 a

Factorise : (i) 10a^(4) x^(2) - 15a^(6) x^(4) + 20 a^(7) x^(5)