Home
Class 9
MATHS
Factorise : 3a^(2) -1-2a...

Factorise :
`3a^(2) -1-2a`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(3a^2 - 1 - 2a\), we can follow these steps: ### Step 1: Rearrange the expression First, we rearrange the expression to group the terms in a standard form: \[ 3a^2 - 2a - 1 \] ### Step 2: Identify coefficients In the expression \(3a^2 - 2a - 1\), we identify: - Coefficient of \(a^2\) (first term) = 3 - Coefficient of \(a\) (middle term) = -2 - Constant term (last term) = -1 ### Step 3: Split the middle term We need to split the middle term \(-2a\) into two terms such that their product equals the product of the coefficient of \(a^2\) and the constant term. That is: \[ 3 \times (-1) = -3 \] We need two numbers that multiply to \(-3\) and add up to \(-2\). The numbers are \(-3\) and \(1\). So we can rewrite the expression as: \[ 3a^2 - 3a + 1a - 1 \] ### Step 4: Group the terms Now, we group the terms: \[ (3a^2 - 3a) + (1a - 1) \] ### Step 5: Factor out the common terms From the first group \(3a^2 - 3a\), we can factor out \(3a\): \[ 3a(a - 1) \] From the second group \(1a - 1\), we can factor out \(1\): \[ 1(a - 1) \] ### Step 6: Combine the factors Now we can write the expression as: \[ 3a(a - 1) + 1(a - 1) \] We can factor out the common term \((a - 1)\): \[ (a - 1)(3a + 1) \] ### Final Answer Thus, the factorised form of the expression \(3a^2 - 1 - 2a\) is: \[ (a - 1)(3a + 1) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 3a^(2) b - 12 a^(2) - 9b + 36

Factorise : 1-8a^(3)

Factorise : 2a^(7) - 128a

Factorise : a(3a - 2)-1

Factorise : 3a^(2) - 5a + 2

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : (i) a^(2) - ab - 3a + 3b

Factorise : (ii) 3a^(2) x - bx + 3a^(2) - b

Factorise : (iii) a^(2) - ab (1-b) - b^(3)

Factorise : (a^(2) -1)(b^(2) -1) + 4ab