Home
Class 9
MATHS
Factorise : x^(2) + 3x + 2 + ax + 2a...

Factorise :
`x^(2) + 3x + 2 + ax + 2a`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^2 + 3x + 2 + ax + 2a \), we will follow these steps: ### Step 1: Rearrange the expression First, let's rearrange the expression to group similar terms together: \[ x^2 + (3 + a)x + (2 + 2a) \] ### Step 2: Identify the coefficients Now, we identify the coefficients for the quadratic expression: - Coefficient of \( x^2 \) is 1. - Coefficient of \( x \) is \( 3 + a \). - Constant term is \( 2 + 2a \). ### Step 3: Factor by grouping We will use the method of grouping. We need to express \( 3 + a \) as a sum of two numbers that multiply to give \( 1 \times (2 + 2a) \). Let’s find two numbers that add up to \( 3 + a \) and multiply to \( 2 + 2a \). ### Step 4: Split the middle term We can rewrite \( 3 + a \) as \( 2 + 1 + a \): \[ x^2 + (2 + 1 + a)x + (2 + 2a) \] This can be grouped as: \[ x^2 + (2 + a)x + 1x + (2 + 2a) \] ### Step 5: Group the terms Now, we can group the terms: \[ (x^2 + (2 + a)x) + (1x + (2 + 2a)) \] ### Step 6: Factor out common terms From the first group \( (x^2 + (2 + a)x) \), we can factor out \( x \): \[ x(x + (2 + a)) + 1(x + (2 + 2a)) \] ### Step 7: Factor out the common binomial Now, we can see that \( (x + (2 + a)) \) is common: \[ (x + (2 + a))(x + 1) \] ### Final Expression Thus, the factorised form of the expression \( x^2 + 3x + 2 + ax + 2a \) is: \[ (x + 2 + a)(x + 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(2) - 25

Factorise : x^(2) - x - 72

Factorise : x^(2) + 5x + 6

Factorise : x^2 + 4x +3

Factorise : 4x^(2) + 3x - 10

Factorise : 2x^(2) - 7x + 6

Factorise : 3x^(2) - 11x - 4

Factorise : 16 x^(2) - 8x - 3

Factorise : 3x^2 + 6x^3

Factorise : x^2 + 6x + 8