Home
Class 9
MATHS
For each trinomial (quadratic expression...

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible.
`2x^(2) - 7x - 15`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the quadratic expression \(2x^2 - 7x - 15\) is factorable, we will follow these steps: ### Step 1: Identify the coefficients The quadratic expression can be compared to the standard form \(ax^2 + bx + c\). Here, we have: - \(a = 2\) - \(b = -7\) - \(c = -15\) ### Step 2: Calculate the discriminant \(D\) The discriminant \(D\) is calculated using the formula: \[ D = b^2 - 4ac \] Substituting the values of \(a\), \(b\), and \(c\): \[ D = (-7)^2 - 4 \cdot 2 \cdot (-15) \] Calculating this step-by-step: - First, calculate \((-7)^2 = 49\). - Next, calculate \(4 \cdot 2 \cdot (-15) = -120\), so \(-4 \cdot 2 \cdot -15 = 120\). - Now, add these results: \(D = 49 + 120 = 169\). ### Step 3: Check if \(D\) is a perfect square Since \(D = 169\) and \(169\) is a perfect square (\(13^2\)), the quadratic expression is factorable. ### Step 4: Split the middle term We need to split the middle term \(-7x\) into two terms whose product is equal to \(a \cdot c\) (which is \(2 \cdot -15 = -30\)) and whose sum is equal to \(-7\). We need two numbers that multiply to \(-30\) and add up to \(-7\). The numbers are \(3\) and \(-10\): - \(3 \cdot (-10) = -30\) - \(3 + (-10) = -7\) ### Step 5: Rewrite the expression Now we can rewrite the expression \(2x^2 - 7x - 15\) as: \[ 2x^2 + 3x - 10x - 15 \] ### Step 6: Factor by grouping Now, we group the terms: \[ (2x^2 + 3x) + (-10x - 15) \] Factoring out the common factors in each group: - From \(2x^2 + 3x\), we can factor out \(x\): \[ x(2x + 3) \] - From \(-10x - 15\), we can factor out \(-5\): \[ -5(2x + 3) \] Now we can combine these: \[ x(2x + 3) - 5(2x + 3) \] Factoring out the common binomial \((2x + 3)\): \[ (2x + 3)(x - 5) \] ### Final Result Thus, the factorization of the expression \(2x^2 - 7x - 15\) is: \[ (2x + 3)(x - 5) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. x^(2) - 3x - 54

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. 2x^(2) + 2x - 75

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. x(2x-1)-1

For each trinomial (quadratic expression), given below find whether it is factorisable or not Factorise, if possible. (i) 3x^(2) + 4a-10 , (ii) x(2x-1)-1

Factorise : 2x^(2) - 7x + 6

Factorise : x^(2) - x - 72

Factorise : x^(2) - 5x -6

Factorise : 6a^(2) - a - 15

Factorise : x^(2) - 5x + 6

Factorise : x^(2) + 5x - 6