Home
Class 9
MATHS
For each trinomial (quadratic expression...

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible.
`2x^(2) + 2x - 75`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the quadratic expression \(2x^2 + 2x - 75\) is factorable, we will follow these steps: ### Step 1: Identify coefficients The given expression is in the form \(ax^2 + bx + c\). Here, we identify: - \(a = 2\) - \(b = 2\) - \(c = -75\) ### Step 2: Calculate the discriminant (D) The discriminant \(D\) is calculated using the formula: \[ D = b^2 - 4ac \] Substituting the values of \(a\), \(b\), and \(c\): \[ D = 2^2 - 4 \cdot 2 \cdot (-75) \] ### Step 3: Simplify the expression for D Calculating \(D\): \[ D = 4 - 4 \cdot 2 \cdot (-75) \] Calculating \(4 \cdot 2 \cdot (-75)\): \[ 4 \cdot 2 = 8 \] \[ 8 \cdot (-75) = -600 \] Thus: \[ D = 4 - (-600) = 4 + 600 = 604 \] ### Step 4: Check if D is a perfect square Now, we need to check if \(D = 604\) is a perfect square. The square root of \(604\) is approximately \(24.6\), which is not an integer. Therefore, \(604\) is not a perfect square. ### Step 5: Conclusion Since the discriminant \(D\) is not a perfect square, the quadratic expression \(2x^2 + 2x - 75\) is not factorable over the integers. ### Final Answer The expression \(2x^2 + 2x - 75\) is not factorable. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. 2x^(2) - 7x - 15

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. x(2x-1)-1

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. x^(2) - 3x - 54

For each trinomial (quadratic expression), given below find whether it is factorisable or not Factorise, if possible. (i) 3x^(2) + 4a-10 , (ii) x(2x-1)-1

Factorise : x^(2) - x - 72

Factorise : x^(2) + 5x - 6

Factorise : x^(2) - 5x -6

Factorise completely : x^2 - y^2 - 3x - 3y

Factorise : 2x^(2) - 7x + 6

Factorise : x^(2) - 25