Home
Class 9
MATHS
For each trinomial (quadratic expression...

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible.
`x(2x-1)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given expression \( x(2x-1) - 1 \) is factorable, we will follow these steps: ### Step 1: Expand the expression We start by expanding the expression \( x(2x - 1) - 1 \). \[ x(2x - 1) - 1 = 2x^2 - x - 1 \] ### Step 2: Identify coefficients Now, we identify the coefficients \( a \), \( b \), and \( c \) from the quadratic expression \( 2x^2 - x - 1 \). - \( a = 2 \) - \( b = -1 \) - \( c = -1 \) ### Step 3: Calculate the discriminant Next, we calculate the discriminant \( D \) using the formula \( D = b^2 - 4ac \). \[ D = (-1)^2 - 4 \cdot 2 \cdot (-1) = 1 + 8 = 9 \] ### Step 4: Check if the discriminant is a perfect square Since \( D = 9 \) is a perfect square, the quadratic expression is factorable. ### Step 5: Factor the quadratic expression To factor \( 2x^2 - x - 1 \), we look for two numbers that multiply to \( a \cdot c = 2 \cdot (-1) = -2 \) and add to \( b = -1 \). The numbers are \( 1 \) and \( -2 \). Now we can rewrite the middle term: \[ 2x^2 - 2x + x - 1 \] ### Step 6: Group the terms Next, we group the terms: \[ (2x^2 - 2x) + (x - 1) \] ### Step 7: Factor by grouping Now we factor out the common factors from each group: \[ 2x(x - 1) + 1(x - 1) \] ### Step 8: Factor out the common binomial We can now factor out the common binomial \( (x - 1) \): \[ (2x + 1)(x - 1) \] ### Final Answer Thus, the expression \( x(2x - 1) - 1 \) factors to: \[ (2x + 1)(x - 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. x^(2) - 3x - 54

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. 2x^(2) - 7x - 15

For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise. If possible. 2x^(2) + 2x - 75

For each trinomial (quadratic expression), given below find whether it is factorisable or not Factorise, if possible. (i) 3x^(2) + 4a-10 , (ii) x(2x-1)-1

Factorise : (iv) xy^(2) + (x-1)y-1

Factorise : (iii) 9x^(2) - (1)/( 16)

Factorise : x^(2) + (a^(2) -1)/(a)x-1

Factorise : x^(2) + (1)/(x^(2)) -11

Factorise : (iv) 9x^(2) - (1)/( 16)

Factorise : (vi) 5-4 (1+ 3x)