Home
Class 9
MATHS
Given : 1176 = 2^(p) . 3^(q) . 7^(r ). F...

Given : 1176 = `2^(p) . 3^(q) . 7^(r )`. Find :
the numerical values of p,q and r.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 1176 = 2^p \cdot 3^q \cdot 7^r \) and find the values of \( p \), \( q \), and \( r \), we will perform the prime factorization of 1176 step-by-step. ### Step 1: Prime Factorization of 1176 We start by dividing 1176 by the smallest prime number, which is 2. 1. \( 1176 \div 2 = 588 \) 2. \( 588 \div 2 = 294 \) 3. \( 294 \div 2 = 147 \) Now, 147 is not divisible by 2, so we move to the next prime number, which is 3. 4. \( 147 \div 3 = 49 \) Next, we divide 49 by the next prime number, which is 7. 5. \( 49 \div 7 = 7 \) 6. \( 7 \div 7 = 1 \) Now we have completely factored 1176 into prime factors. ### Step 2: Write the Prime Factorization From the steps above, we can write the prime factorization of 1176 as: \[ 1176 = 2^3 \cdot 3^1 \cdot 7^2 \] ### Step 3: Equate with the Given Expression Now we can equate this with the expression \( 2^p \cdot 3^q \cdot 7^r \): \[ 2^p \cdot 3^q \cdot 7^r = 2^3 \cdot 3^1 \cdot 7^2 \] ### Step 4: Compare the Exponents Now we compare the exponents of the same bases: - For base 2: \( p = 3 \) - For base 3: \( q = 1 \) - For base 7: \( r = 2 \) ### Final Values Thus, the values are: - \( p = 3 \) - \( q = 1 \) - \( r = 2 \) ### Summary of the Solution The numerical values of \( p \), \( q \), and \( r \) are: - \( p = 3 \) - \( q = 1 \) - \( r = 2 \)
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Let I=int_(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx , where p, q, r are arbitrary constants. The numerical value of I depends on:

If p=(sqrt(q)+z)/(r^(2)+z) , what is the value of z in terms of p, q, and r ?

(a) If r^(2) = pq , show that p : q is the duplicate ratio of (p + r) : (q + r) . (b) If (p - x) : (q - x) be the duplicate ratio of p : q then show that : (1)/(p) + (1)/(q) = (1)/(r) .

In Fig. 6.43, if P Q_|_P S , P Q|| S R , /_S Q R=28^@ and /_Q R T=65^@ , then find the values of x and y.

Let p , q , r in R^(+) and 27pqr ge (p+q+r)^(3) and 3p+4q+5r=12 . Then the value of 8p+4q-7r=

The incorrect statement is (A) p →q is logically equivalent to ~p ∨ q. (B) If the truth-values of p, q r are T, F, T respectively, then the truth value of (p ∨ q) ∧ (q ∨ r) is T. (C) ~(p ∨ q ∨ r) = ~p ∧ ~q ∧ ~r (D) The truth-value of p ~ (p ∧ q) is always T

In figure, if P Q_|_P S ,P Q|| S R ,/_S Q R=28^0 and /_Q R T=65^0, then find the values of x and ydot Figure

Given points P(2,3), Q(4, -2), and R(alpha,0) . Find the value of a if PR + RQ is minimum.

If p/q=(2/3)^2-:(6/7)^0, find the value of (q/p)^3

In /_\P Q R , right angled at Q ,\ P Q=4c m and R Q=3c m . Find the values of sinP , sinR , secP and secR .

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Given : 1176 = 2^(p) . 3^(q) . 7^(r ). Find : the numerical values ...

    Text Solution

    |

  2. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  3. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  4. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  5. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  6. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  7. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  8. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  9. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  10. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  11. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  12. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  13. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  14. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  15. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  16. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  17. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  18. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  19. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  20. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |