Home
Class 9
MATHS
Simplify : (3^(a+2)-3^(a+1))/(4xx3^(a)-3...

Simplify : `(3^(a+2)-3^(a+1))/(4xx3^(a)-3^(a))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3^{(a+2)} - 3^{(a+1)}) / (4 \cdot 3^{a} - 3^{a})\), we can follow these steps: ### Step 1: Factor out common terms in the numerator In the numerator, we have \(3^{(a+2)} - 3^{(a+1)}\). We can factor out the common term \(3^{(a+1)}\): \[ 3^{(a+2)} - 3^{(a+1)} = 3^{(a+1)}(3 - 1) = 3^{(a+1)} \cdot 2 \] ### Step 2: Simplify the numerator Now, substituting back into the original expression, we have: \[ \frac{3^{(a+1)} \cdot 2}{4 \cdot 3^{a} - 3^{a}} \] ### Step 3: Simplify the denominator In the denominator, we can factor out \(3^{a}\): \[ 4 \cdot 3^{a} - 3^{a} = (4 - 1) \cdot 3^{a} = 3 \cdot 3^{a} \] ### Step 4: Substitute the simplified denominator Now we can rewrite the expression: \[ \frac{3^{(a+1)} \cdot 2}{3 \cdot 3^{a}} \] ### Step 5: Simplify the fraction Now we can simplify the fraction: \[ = \frac{2 \cdot 3^{(a+1)}}{3 \cdot 3^{a}} = \frac{2}{3} \cdot \frac{3^{(a+1)}}{3^{a}} = \frac{2}{3} \cdot 3^{(a+1 - a)} = \frac{2}{3} \cdot 3^{1} = \frac{2 \cdot 3}{3} = 2 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/(3))

Simplify: (i) (3^5)^(11)xx(3^(15))^4-(3^5)^(18)xx(3^5)^5 , (ii) (16xx2^(n+1)-4xx2^n)/(16xx2^(n+2)-2xx2^(n+2))

Simplify (8^(3a)xx2^(5)xx2^(2a))/(4xx2^(11a)xx2^(-2a))

Simplify: (i) 5^2xx3^3 (ii) 2^4xx3^2

Simplify : (1.3xx2.4)/(0.39)

Simplify: {(1/3)^(-3)-\ (1/2)^(-3)}-:(1/4)^(-3)

Simplify : (6.3xx0.3)/(0.1)

Simplify : 4 2/3+1/3-4 1/3

Simplify : (4xx10^(-2))-(2.5xx10^(-3))

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Simplify : (3^(a+2)-3^(a+1))/(4xx3^(a)-3^(a))

    Text Solution

    |

  2. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  3. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  4. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  5. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  6. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  7. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  8. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  9. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  10. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  11. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  12. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  13. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  14. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  15. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  16. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  17. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  18. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  19. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  20. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |