Home
Class 9
MATHS
Simplify : ((a^(m))/(a^(n)))^(m+n)((a^(n...

Simplify : `((a^(m))/(a^(n)))^(m+n)((a^(n))/(a^(l)))^(n+l)((a^(l))/(a^(m)))^(l+m)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{a^m}{a^n}\right)^{m+n} \left(\frac{a^n}{a^l}\right)^{n+l} \left(\frac{a^l}{a^m}\right)^{l+m}\), we can follow these steps: ### Step 1: Rewrite the fractions using the property of exponents We can use the property of exponents that states \(\frac{a^m}{a^n} = a^{m-n}\). Thus, we rewrite each fraction: \[ \frac{a^m}{a^n} = a^{m-n}, \quad \frac{a^n}{a^l} = a^{n-l}, \quad \frac{a^l}{a^m} = a^{l-m} \] ### Step 2: Substitute back into the expression Now we substitute these back into the original expression: \[ \left(a^{m-n}\right)^{m+n} \left(a^{n-l}\right)^{n+l} \left(a^{l-m}\right)^{l+m} \] ### Step 3: Apply the power of a power property Using the property \((a^x)^y = a^{xy}\), we can simplify each term: \[ a^{(m-n)(m+n)} \cdot a^{(n-l)(n+l)} \cdot a^{(l-m)(l+m)} \] ### Step 4: Combine the exponents When multiplying powers with the same base, we add the exponents: \[ a^{(m-n)(m+n) + (n-l)(n+l) + (l-m)(l+m)} \] ### Step 5: Expand each term Now we will expand each of the terms in the exponent: 1. \((m-n)(m+n) = m^2 - n^2\) 2. \((n-l)(n+l) = n^2 - l^2\) 3. \((l-m)(l+m) = l^2 - m^2\) So, we have: \[ m^2 - n^2 + n^2 - l^2 + l^2 - m^2 \] ### Step 6: Simplify the expression Now, we can see that the terms cancel out: \[ m^2 - m^2 + n^2 - n^2 + l^2 - l^2 = 0 \] Thus, we are left with: \[ a^0 \] ### Step 7: Final simplification Since any non-zero number raised to the power of 0 is 1, we conclude: \[ a^0 = 1 \] ### Final Answer: The simplified expression is \(1\). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^(l))/(a^(-m)))^(l-m)=1

Differential coefficient of (x^((l+m)/(m-n)))^(1//(n-l))*(x^((m+n)/(n-l)))^(1//(l-m))*(x^((n+l)/(l-m)))^(1//(m-n)) wrt x is

If f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))^(m+n)((x^n)/(x^l))^(n+l) , then f'(x)

If f(x)=((x^l)/(x^m))^(l+m)((x^m)/(x^n))^(m+n)((x^n)/(x^l))^(n+l) , then f^(prime)(x) is equal to (a) 1 (b) 0 (c) x^(l+m+n) (d) none of these

(x^(m+n)xxx^(n+l)xxx^(l+m))/(x^mxxx^nxxx^l)

The point of intersection of tangents drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at the points where it is intersected by the line l x+m y+n=0 , is ((-a^2l)/n ,(b^2m)/n) (b) ((-a^2l)/m ,(b^2n)/m) ((a^2l)/m ,(-b^2n)/m) (d) ((a^2l)/m ,(b^2n)/m)

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

If f(x) = (x^l/x^m)^(l+m) (x^m/x^n)^(m+n) (x^n/x^l)^(n+l) , then find f'(x).

If a=x^(m+n)\ y^l,\ b=x^(n+l)\ y^m and c=x^(l+m)y^n , prove that a^(m-n)\ b^(n-l)\ c^(l-m\ )=1

If x=a^(m+n),\ y=a^(n+l) and z=a^(l+m) , prove that x^m y^n z^l=x^n y^l z^m

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Simplify : ((a^(m))/(a^(n)))^(m+n)((a^(n))/(a^(l)))^(n+l)((a^(l))/(a^(...

    Text Solution

    |

  2. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  3. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  4. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  5. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  6. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  7. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  8. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  9. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  10. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  11. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  12. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  13. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  14. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  15. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  16. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  17. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  18. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  19. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  20. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |