Home
Class 9
MATHS
Solve for x : 9xx3^(x)=(27)^(2x-5)...

Solve for x : `9xx3^(x)=(27)^(2x-5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 9 \cdot 3^x = (27)^{2x - 5} \), we can follow these steps: ### Step 1: Rewrite the bases We know that: - \( 9 = 3^2 \) - \( 27 = 3^3 \) So, we can rewrite the equation as: \[ 3^2 \cdot 3^x = (3^3)^{2x - 5} \] ### Step 2: Simplify both sides Using the property of exponents that states \( a^m \cdot a^n = a^{m+n} \) on the left side, we have: \[ 3^{2 + x} = 3^{3(2x - 5)} \] On the right side, using the property \( (a^m)^n = a^{m \cdot n} \), we get: \[ 3^{2 + x} = 3^{6x - 15} \] ### Step 3: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 2 + x = 6x - 15 \] ### Step 4: Solve for \( x \) Now, we will solve for \( x \): 1. Rearranging the equation: \[ 2 + 15 = 6x - x \] This simplifies to: \[ 17 = 5x \] 2. Dividing both sides by 5: \[ x = \frac{17}{5} \] ### Final Answer Thus, the solution for \( x \) is: \[ x = \frac{17}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve for x : 3^(4x + 1) = (27)^(x + 1)

Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

Solve for x : (root3((3)/(5)))^(2x+2)=(25)/(9)

Solve for x: 11^(4x-5)*3^(2x)=5^(3-x) * 7^(-x) .

Solve for x : sqrt(((3)/(5))^(1-2x))=4(17)/(27)

Solve for x : 2^(5x - 1) = 4 xx 2^(3x + 1)

Solve for x : (x + 2)/(4 + x) = 5/9

Solve : 3x + 2 (x+2) = 20 - (2x -5)

Solve for x. (root(3)((3)/(5)))^(2x + 1) = (125)/(27)

Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(0) = 27

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Solve for x : 9xx3^(x)=(27)^(2x-5)

    Text Solution

    |

  2. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  3. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  4. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  5. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  6. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  7. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  8. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  9. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  10. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  11. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  12. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  13. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  14. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  15. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  16. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  17. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  18. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  19. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  20. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |