Home
Class 9
MATHS
Solve : 2^(2x +3) - 9 xx 2^(x) + 1 = 0...

Solve : `2^(2x +3) - 9 xx 2^(x) + 1 = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2^{2x + 3} - 9 \cdot 2^x + 1 = 0\), we can follow these steps: ### Step 1: Rewrite the equation using properties of exponents We can express \(2^{2x + 3}\) as \(2^{2x} \cdot 2^3\): \[ 2^{2x + 3} = 2^{2x} \cdot 8 \] Thus, the equation becomes: \[ 8 \cdot 2^{2x} - 9 \cdot 2^x + 1 = 0 \] ### Step 2: Substitute \(2^x\) with a new variable Let \(t = 2^x\). Then, \(2^{2x} = (2^x)^2 = t^2\). Substituting these into the equation gives: \[ 8t^2 - 9t + 1 = 0 \] ### Step 3: Solve the quadratic equation Now we have a quadratic equation in \(t\): \[ 8t^2 - 9t + 1 = 0 \] We can use the quadratic formula \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 8\), \(b = -9\), and \(c = 1\). Calculating the discriminant: \[ b^2 - 4ac = (-9)^2 - 4 \cdot 8 \cdot 1 = 81 - 32 = 49 \] Now applying the quadratic formula: \[ t = \frac{9 \pm \sqrt{49}}{2 \cdot 8} = \frac{9 \pm 7}{16} \] Calculating the two possible values for \(t\): 1. \(t = \frac{9 + 7}{16} = \frac{16}{16} = 1\) 2. \(t = \frac{9 - 7}{16} = \frac{2}{16} = \frac{1}{8}\) ### Step 4: Substitute back to find \(x\) Recall that \(t = 2^x\): 1. For \(t = 1\): \[ 2^x = 1 \implies x = 0 \quad (\text{since } 2^0 = 1) \] 2. For \(t = \frac{1}{8}\): \[ 2^x = \frac{1}{8} \implies 2^x = 2^{-3} \implies x = -3 \] ### Final Solution The solutions to the equation are: \[ x = 0 \quad \text{or} \quad x = -3 \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

Solve for x : 2^(5x - 1) = 4 xx 2^(3x + 1)

Solve : 3^(x2) : 3^(x) = 9 : 1

Solve 3^(2x^(2)-7x + 7) = 9

Solve the equations: Q. 2^(2x-1)-9xx2^(x-2)+1=0 .

Solve 11(x - 5) + 10(y - 2) + 54 = 0 7(2x - 1) + 9 (3y - 1) = 25

Solve x^2+3x+9=0

Solve 3^(2x^2-7x+7)=9.

Solve : (x+2)(x+3)+(x-3)(x-2)-2x(x+1)=0

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Solve : 2^(2x +3) - 9 xx 2^(x) + 1 = 0

    Text Solution

    |

  2. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  3. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  4. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  5. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  6. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  7. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  8. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  9. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  10. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  11. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  12. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  13. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  14. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  15. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  16. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  17. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  18. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  19. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  20. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |