Home
Class 9
MATHS
Evaluate : 5^(-4)xx(125)^((5)/(3))+(...

Evaluate :
`5^(-4)xx(125)^((5)/(3))+(25)^(-(1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 5^{-4} \times (125)^{\frac{5}{3}} + (25)^{-\frac{1}{2}} \), we will follow these steps: ### Step 1: Rewrite the bases in terms of 5 We know that: - \( 125 = 5^3 \) - \( 25 = 5^2 \) Thus, we can rewrite the expression as: \[ 5^{-4} \times (5^3)^{\frac{5}{3}} + (5^2)^{-\frac{1}{2}} \] ### Step 2: Apply the power of a power property Using the property \( (a^m)^n = a^{m \cdot n} \), we can simplify: \[ (5^3)^{\frac{5}{3}} = 5^{3 \cdot \frac{5}{3}} = 5^5 \] And, \[ (5^2)^{-\frac{1}{2}} = 5^{2 \cdot -\frac{1}{2}} = 5^{-1} \] So now our expression becomes: \[ 5^{-4} \times 5^5 + 5^{-1} \] ### Step 3: Combine the terms Using the property \( a^m \times a^n = a^{m+n} \): \[ 5^{-4} \times 5^5 = 5^{-4 + 5} = 5^1 = 5 \] Now, we can rewrite the expression: \[ 5 + 5^{-1} \] ### Step 4: Simplify \( 5^{-1} \) We know that: \[ 5^{-1} = \frac{1}{5} \] Thus, the expression now is: \[ 5 + \frac{1}{5} \] ### Step 5: Find a common denominator To add these two terms, we convert \( 5 \) into a fraction: \[ 5 = \frac{25}{5} \] Now we can add: \[ \frac{25}{5} + \frac{1}{5} = \frac{25 + 1}{5} = \frac{26}{5} \] ### Final Answer Thus, the evaluated expression is: \[ \frac{26}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ((27)/(125))^((2)/(3))xx((9)/(25))^(-(3)/(2))

Evaluate : 7^(0)xx(25)^(-(3)/(2))-5^(-3)

Evaluate: e. 3 (5)/(8) xx (24)/(25)

Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))xx((25)/(9))^(-(1)/(2))

Evaluate : (iii) (-125)/(72)xx(9)/(-5)

Evaluate: 1.25 xx 3.4

Evaluate : (i) ((2)/(-3)xx(5)/(4))+((5)/(9)xx(3)/(-10))

Evaluate : a. (-1)^(11) b. (-3)^(2)xx(5)^(3) c. 6^(2)xx3^(3) d. (-2)^(3)xx(-5)^(2) e. (-1)^(7)xx2 f. (-1)^(4)xx(-1)^(5) g. 4^(3)xx3^(4) h. (-2)^(5)xx5^(3) i. (-4)^(3)xx(-6)^(3) j. (-1)^(33)xx(-3)^(1) k. ((-1)/(6))^(2) l. ((2)/(11))^(3)

Evaluate: sqrt(( 1)/(4)) + (0.01) ^(-(1)/(2)) xx (5) - (27)^((2)/(3))

Evaluate: (5 times (-4) times (-6))/(-3)

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (A)
  1. Evaluate : 3^(3)xx(243)^(-(2)/(3))xx9^(-(1)/(3))

    Text Solution

    |

  2. Evaluate : 5^(-4)xx(125)^((5)/(3))+(25)^(-(1)/(2))

    Text Solution

    |

  3. Evaluate : ((27)/(125))^((2)/(3))xx((9)/(25))^(-(3)/(2))

    Text Solution

    |

  4. Evaluate : 7^(0)xx(25)^(-(3)/(2))-5^(-3)

    Text Solution

    |

  5. Evaluate : ((16)/(81))^(-3//4)xx((49/9)^(3//2)/((343)/(216))^(2//3))

    Text Solution

    |

  6. Simplify : ((8 x^(3)) /(125y^(3)))^((2)/(3))

    Text Solution

    |

  7. Simplify : (a + b)^(-1) (a^(-1) + b^(-1))

    Text Solution

    |

  8. Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

    Text Solution

    |

  9. Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/(3))

    Text Solution

    |

  10. Simplify: sqrt(1/4)+(0. 01)^(-1/2)-(27)^(2/3)

    Text Solution

    |

  11. Evaluate : ((27)/(8))^((2)/(3))-((1)/(4))^(-2)+5^(0)

    Text Solution

    |

  12. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  13. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  14. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  15. Simplify each of the folloiwing and express with positive index : [...

    Text Solution

    |

  16. If 2160 = 2^(a). 3^(b) . 5^(c ), find a, b and c. Hence calculate the ...

    Text Solution

    |

  17. If 1960=2^(a)xx5^(b)xx7^(c ), calculate the value of 2^(-a)xx7^(b)xx5^...

    Text Solution

    |

  18. Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  19. Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  20. Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^...

    Text Solution

    |