Home
Class 9
MATHS
Simplify : (a + b)^(-1) (a^(-1) + b^(...

Simplify :
`(a + b)^(-1) (a^(-1) + b^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((a + b)^{-1} (a^{-1} + b^{-1})\), we will follow these steps: ### Step 1: Rewrite the negative exponents We start by rewriting the negative exponents in the expression: \[ (a + b)^{-1} = \frac{1}{a + b} \] \[ a^{-1} = \frac{1}{a}, \quad b^{-1} = \frac{1}{b} \] Thus, we can rewrite the expression as: \[ \frac{1}{a + b} \left( \frac{1}{a} + \frac{1}{b} \right) \] ### Step 2: Combine the terms inside the parentheses Next, we combine the fractions inside the parentheses: \[ \frac{1}{a} + \frac{1}{b} = \frac{b + a}{ab} \] So now our expression becomes: \[ \frac{1}{a + b} \cdot \frac{a + b}{ab} \] ### Step 3: Simplify the expression Now, we can simplify the expression by multiplying the two fractions: \[ \frac{1 \cdot (a + b)}{(a + b) \cdot ab} \] Here, the \((a + b)\) in the numerator and denominator cancels out: \[ = \frac{1}{ab} \] ### Final Answer Thus, the simplified form of the expression \((a + b)^{-1} (a^{-1} + b^{-1})\) is: \[ \frac{1}{ab} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Simplify : (5^(-1)xx\ 3^(-1))^(-1)-:6^(-1)

Simplify : {6^(-1)+\ (3/2)^(-1)}^(-1)

Simplify: {(1/2)^(-1)x\ (-4)^(-1)}^(-1)

Simplify : tan ^(−1)(1/2)+tan ^(−1) (1/3).

Simplify: [{((-1)/4)^2}^(-2)]^(-1)

Simplify: (i) (-1)^6 (ii) (-1)^7

Simplify : : ( ( x+(1)/(y)) ^(a) ( x-(1)/(y))^(b))/((y+(1)/(x))^(a) (y-(1)/(x))^(b))

Simplify: (i) (1)^5 (ii) (-1)^5

Simplify (1)/((625)^(-1//4)) .

Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (A)
  1. Evaluate : 7^(0)xx(25)^(-(3)/(2))-5^(-3)

    Text Solution

    |

  2. Evaluate : ((16)/(81))^(-3//4)xx((49/9)^(3//2)/((343)/(216))^(2//3))

    Text Solution

    |

  3. Simplify : ((8 x^(3)) /(125y^(3)))^((2)/(3))

    Text Solution

    |

  4. Simplify : (a + b)^(-1) (a^(-1) + b^(-1))

    Text Solution

    |

  5. Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

    Text Solution

    |

  6. Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/(3))

    Text Solution

    |

  7. Simplify: sqrt(1/4)+(0. 01)^(-1/2)-(27)^(2/3)

    Text Solution

    |

  8. Evaluate : ((27)/(8))^((2)/(3))-((1)/(4))^(-2)+5^(0)

    Text Solution

    |

  9. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  10. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  11. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  12. Simplify each of the folloiwing and express with positive index : [...

    Text Solution

    |

  13. If 2160 = 2^(a). 3^(b) . 5^(c ), find a, b and c. Hence calculate the ...

    Text Solution

    |

  14. If 1960=2^(a)xx5^(b)xx7^(c ), calculate the value of 2^(-a)xx7^(b)xx5^...

    Text Solution

    |

  15. Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  16. Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  17. Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^...

    Text Solution

    |

  18. If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^...

    Text Solution

    |

  19. Prove that: ((x^a)/(x^b))^a^2+a b+b^2x\ ((x6b)/(x^c))^b^2+b c+c^2\ x\ ...

    Text Solution

    |

  20. Simplify : ((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^...

    Text Solution

    |