Home
Class 9
MATHS
Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5...

Simplify :
`(5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((5^{n+3} - 6 \times 5^{n+1}) / (9 \times 5^{n} - 5^{n} \times 2^2)\), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression: \[ \frac{5^{n+3} - 6 \times 5^{n+1}}{9 \times 5^{n} - 5^{n} \times 2^2} \] ### Step 2: Factor out common terms in the numerator In the numerator, we can factor out \(5^{n+1}\): \[ = \frac{5^{n+1}(5^2 - 6)}{9 \times 5^{n} - 5^{n} \times 4} \] This simplifies to: \[ = \frac{5^{n+1}(25 - 6)}{9 \times 5^{n} - 4 \times 5^{n}} \] ### Step 3: Simplify the numerator Now, simplify \(25 - 6\): \[ = \frac{5^{n+1} \times 19}{9 \times 5^{n} - 4 \times 5^{n}} \] ### Step 4: Factor out common terms in the denominator In the denominator, we can factor out \(5^{n}\): \[ = \frac{5^{n+1} \times 19}{(9 - 4) \times 5^{n}} \] This simplifies to: \[ = \frac{5^{n+1} \times 19}{5 \times 5^{n}} \] ### Step 5: Cancel out \(5^{n}\) Now, we can cancel \(5^{n}\) from the numerator and denominator: \[ = \frac{19 \times 5^{n+1}}{5 \times 5^{n}} = \frac{19 \times 5^{n} \times 5}{5 \times 5^{n}} = \frac{19}{1} \] ### Step 6: Final Result Thus, the simplified expression is: \[ = 19 \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)

Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

Simplify: (i) (10xx5^(n+1)+25xx5^n)/(3xx5^(n+2)+10xx5^(n+1)) (ii) ((16)^7xx(25)^5xx(81)^3)/((15)^7xx(24)^5xx(80)^3)

Simplify : a. 15^(7)-:5^(3) b. ((5^(4))^(3)xx2^(12))/(3^(12)) c. ((4^(3))^(2)xx5^(6))/(10^(6)) d. (2xx3^(4)xx2^(5))/(9xx4^(2)) e. (2^(2)xx3^(4)xx16)/(3^(2)xx32) f. (4^(5)xxa^(8)xxb^(16))/(4^(4)xxa^(7)xxb^(4))

Simplify : (-5\ xx2/(15))(6\ xx2/9)

Simplify : ((-9)/4xx5/3)+\ ((13)/2xx5/6)

Simplify the following: (i)\ (5^(n+3)-\ 6\ xx\ 5^(n+1))/(9\ xx\ 5^n-2^2\ xx\ 5^n) (ii)\ (6(8)^(n+1)+\ 16(2)^(3n-2))/(10(2)^(3n+1)-7\ (8)^n)

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (A)
  1. Evaluate : 7^(0)xx(25)^(-(3)/(2))-5^(-3)

    Text Solution

    |

  2. Evaluate : ((16)/(81))^(-3//4)xx((49/9)^(3//2)/((343)/(216))^(2//3))

    Text Solution

    |

  3. Simplify : ((8 x^(3)) /(125y^(3)))^((2)/(3))

    Text Solution

    |

  4. Simplify : (a + b)^(-1) (a^(-1) + b^(-1))

    Text Solution

    |

  5. Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

    Text Solution

    |

  6. Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/(3))

    Text Solution

    |

  7. Simplify: sqrt(1/4)+(0. 01)^(-1/2)-(27)^(2/3)

    Text Solution

    |

  8. Evaluate : ((27)/(8))^((2)/(3))-((1)/(4))^(-2)+5^(0)

    Text Solution

    |

  9. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  10. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  11. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  12. Simplify each of the folloiwing and express with positive index : [...

    Text Solution

    |

  13. If 2160 = 2^(a). 3^(b) . 5^(c ), find a, b and c. Hence calculate the ...

    Text Solution

    |

  14. If 1960=2^(a)xx5^(b)xx7^(c ), calculate the value of 2^(-a)xx7^(b)xx5^...

    Text Solution

    |

  15. Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  16. Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  17. Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^...

    Text Solution

    |

  18. If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^...

    Text Solution

    |

  19. Prove that: ((x^a)/(x^b))^a^2+a b+b^2x\ ((x6b)/(x^c))^b^2+b c+c^2\ x\ ...

    Text Solution

    |

  20. Simplify : ((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^...

    Text Solution

    |