Home
Class 9
MATHS
Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/...

Simplify : `(3x^(2))^(-3)xx(x^(9))^((2)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `(3x^(2))^(-3) * (x^(9))^(2/3)`, we can follow these steps: ### Step 1: Apply the Power of a Product Rule We start with the expression: \[ (3x^2)^{-3} \cdot (x^9)^{\frac{2}{3}} \] We can separate the components of the first term: \[ = 3^{-3} \cdot (x^2)^{-3} \cdot (x^9)^{\frac{2}{3}} \] ### Step 2: Simplify Each Component Now we simplify each part: \[ 3^{-3} = \frac{1}{3^3} \quad \text{and} \quad (x^2)^{-3} = x^{-6} \quad \text{and} \quad (x^9)^{\frac{2}{3}} = x^{6} \] So we rewrite the expression: \[ = \frac{1}{3^3} \cdot x^{-6} \cdot x^{6} \] ### Step 3: Combine the x Terms Using the property of exponents that states \(a^m \cdot a^n = a^{m+n}\): \[ x^{-6} \cdot x^{6} = x^{-6 + 6} = x^{0} \] Thus, the expression simplifies to: \[ = \frac{1}{3^3} \cdot x^{0} \] ### Step 4: Simplify Further Since \(x^0 = 1\): \[ = \frac{1}{3^3} \cdot 1 = \frac{1}{27} \] ### Final Answer The simplified expression is: \[ \frac{1}{27} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Simplify : ((8 x^(3)) /(125y^(3)))^((2)/(3))

Simplify : (8(3)(x)^(2)(3))/(6x)

Simplify: x^2(x+2y)(x-3y)

Simplify: (3x-2)(x-1)(3x+5)

Simplify: (5-x)(3-2x)(4-3x)

Simplify that: (2x^(-2)y^3)^3

Simplify: (x+3)^3+\ (x-3)^3

Simplify: (3x+2)(2x+3)-(4x-3)(2x-1)

Simplify : 7x -[2-3(1-3x)]

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (A)
  1. Evaluate : 7^(0)xx(25)^(-(3)/(2))-5^(-3)

    Text Solution

    |

  2. Evaluate : ((16)/(81))^(-3//4)xx((49/9)^(3//2)/((343)/(216))^(2//3))

    Text Solution

    |

  3. Simplify : ((8 x^(3)) /(125y^(3)))^((2)/(3))

    Text Solution

    |

  4. Simplify : (a + b)^(-1) (a^(-1) + b^(-1))

    Text Solution

    |

  5. Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

    Text Solution

    |

  6. Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/(3))

    Text Solution

    |

  7. Simplify: sqrt(1/4)+(0. 01)^(-1/2)-(27)^(2/3)

    Text Solution

    |

  8. Evaluate : ((27)/(8))^((2)/(3))-((1)/(4))^(-2)+5^(0)

    Text Solution

    |

  9. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  10. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  11. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  12. Simplify each of the folloiwing and express with positive index : [...

    Text Solution

    |

  13. If 2160 = 2^(a). 3^(b) . 5^(c ), find a, b and c. Hence calculate the ...

    Text Solution

    |

  14. If 1960=2^(a)xx5^(b)xx7^(c ), calculate the value of 2^(-a)xx7^(b)xx5^...

    Text Solution

    |

  15. Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  16. Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  17. Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^...

    Text Solution

    |

  18. If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^...

    Text Solution

    |

  19. Prove that: ((x^a)/(x^b))^a^2+a b+b^2x\ ((x6b)/(x^c))^b^2+b c+c^2\ x\ ...

    Text Solution

    |

  20. Simplify : ((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^...

    Text Solution

    |