Home
Class 9
MATHS
Simplify : ((x^(a))/(x^(-b)))^(a^(2)-...

Simplify :
`((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^(b^(2)-bc+c^(2))xx((x^(c))/(x^(-a)))^(c^(2)-ca+a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \left(\frac{x^a}{x^{-b}}\right)^{a^2 - ab + b^2} \cdot \left(\frac{x^b}{x^{-c}}\right)^{b^2 - bc + c^2} \cdot \left(\frac{x^c}{x^{-a}}\right)^{c^2 - ca + a^2} \] we will follow the laws of exponents step by step. ### Step 1: Rewrite the fractions using the exponent rules Using the property \(\frac{x^m}{x^n} = x^{m-n}\), we can rewrite each fraction: \[ \frac{x^a}{x^{-b}} = x^{a - (-b)} = x^{a + b} \] \[ \frac{x^b}{x^{-c}} = x^{b - (-c)} = x^{b + c} \] \[ \frac{x^c}{x^{-a}} = x^{c - (-a)} = x^{c + a} \] ### Step 2: Substitute back into the expression Now substituting these back into the original expression gives us: \[ \left(x^{a + b}\right)^{a^2 - ab + b^2} \cdot \left(x^{b + c}\right)^{b^2 - bc + c^2} \cdot \left(x^{c + a}\right)^{c^2 - ca + a^2} \] ### Step 3: Apply the power of a power rule Using the property \((x^m)^n = x^{m \cdot n}\), we can simplify each term: \[ x^{(a + b)(a^2 - ab + b^2)} \cdot x^{(b + c)(b^2 - bc + c^2)} \cdot x^{(c + a)(c^2 - ca + a^2)} \] ### Step 4: Combine the exponents Now we can combine the exponents since they are all multiplied: \[ x^{(a + b)(a^2 - ab + b^2) + (b + c)(b^2 - bc + c^2) + (c + a)(c^2 - ca + a^2)} \] ### Step 5: Expand and simplify the exponent Now we need to expand each term in the exponent: 1. **First term**: \[ (a + b)(a^2 - ab + b^2) = a^3 + b^3 + a^2b - ab^2 \] 2. **Second term**: \[ (b + c)(b^2 - bc + c^2) = b^3 + c^3 + b^2c - bc^2 \] 3. **Third term**: \[ (c + a)(c^2 - ca + a^2) = c^3 + a^3 + c^2a - ca^2 \] Now, combine all these terms: \[ x^{(a^3 + b^3 + a^2b - ab^2) + (b^3 + c^3 + b^2c - bc^2) + (c^3 + a^3 + c^2a - ca^2)} \] ### Step 6: Combine like terms Combining like terms, we get: \[ x^{2a^3 + 2b^3 + 2c^3 + (a^2b + b^2c + c^2a) - (ab^2 + bc^2 + ca^2)} \] ### Final Result Thus, the simplified expression is: \[ x^{2(a^3 + b^3 + c^3) + (a^2b + b^2c + c^2a) - (ab^2 + bc^2 + ca^2)} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Prove that: ((x^a)/(x^(b)))^(a^(2+a b+b^2))\ xx\ ((x^b)/(x^(c)))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^(a)))^(c^(2+c a+a^2))=1

Prove that: ((x^a)/(x^b))^(a^(2+a b+b^(2)))xx\ ((x^b)/(x^c))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^a))^(c^(2+c a+a^2))

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(a^2+a b+b^2)((x^b)/(x^c))^(b^2+b c+c^2)((x^c)/(x^a))^(c^2+c a+a^2)=1

Simplify: (i)\ ((x^(a+b))/(x^c))^(a-b)\ ((x^(b+c))/(x^a))^(b-c)\ ((x^(c+a))/(x^b))^(c-a) (ii)\ ((x^l)/(x^m))^(1/(lm))\ xx\ ((x^m)/(x^n))^(1/(mn))\ xx\ \ ((x^n)/(x^l))^(1/(ln))

If x is a positive real number and the exponents are rational numbers, Find: ((x^a)/(x^b))^(a^2+b^2-a b). ((x^b)/x^c)^(b^2+c^2-b c). ((x^c)/(x^(a)))^(c^2+a^2-c a)

(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(1/(b-a))xx(x^(1/(c-a)))^(1/(c-b))

Prove that: ((x^a)/(x^b))^c\xx\ ((x^b)/(x^c))^a\ xx\ ((x^c)/(x^a))^b=1

Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2(x^(b+c))^2 (x^(c+a))^2)/((x^a x^b x^c)^4)=1

Show that : (i) x^(a(b-c))/(x^(b(a-c)))/((x^b)/(x^a))^c=1 , (ii) ((x^(a+b))^2(x^(b+c))^2(x^(c+a))^2)/((x^a x^b x^c)^4)=1

For any positive real number x , find the value of ((x^a)/(x^b))^(a+b)\ xx\ ((x^b)/(x^c))^(b+c)\ xx\ ((x^c)/(x^a))^(c+a)

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (A)
  1. Evaluate : 7^(0)xx(25)^(-(3)/(2))-5^(-3)

    Text Solution

    |

  2. Evaluate : ((16)/(81))^(-3//4)xx((49/9)^(3//2)/((343)/(216))^(2//3))

    Text Solution

    |

  3. Simplify : ((8 x^(3)) /(125y^(3)))^((2)/(3))

    Text Solution

    |

  4. Simplify : (a + b)^(-1) (a^(-1) + b^(-1))

    Text Solution

    |

  5. Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

    Text Solution

    |

  6. Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/(3))

    Text Solution

    |

  7. Simplify: sqrt(1/4)+(0. 01)^(-1/2)-(27)^(2/3)

    Text Solution

    |

  8. Evaluate : ((27)/(8))^((2)/(3))-((1)/(4))^(-2)+5^(0)

    Text Solution

    |

  9. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  10. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  11. Simplify each of the folloiwing and express with positive index : (...

    Text Solution

    |

  12. Simplify each of the folloiwing and express with positive index : [...

    Text Solution

    |

  13. If 2160 = 2^(a). 3^(b) . 5^(c ), find a, b and c. Hence calculate the ...

    Text Solution

    |

  14. If 1960=2^(a)xx5^(b)xx7^(c ), calculate the value of 2^(-a)xx7^(b)xx5^...

    Text Solution

    |

  15. Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  16. Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

    Text Solution

    |

  17. Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^...

    Text Solution

    |

  18. If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^...

    Text Solution

    |

  19. Prove that: ((x^a)/(x^b))^a^2+a b+b^2x\ ((x6b)/(x^c))^b^2+b c+c^2\ x\ ...

    Text Solution

    |

  20. Simplify : ((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^...

    Text Solution

    |