Home
Class 9
MATHS
Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) =...

Solve :
`8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 8 \cdot 2^{2x} + 4 \cdot 2^{x + 1} = 1 + 2^{x} \), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ 8 \cdot 2^{2x} + 4 \cdot 2^{x + 1} = 1 + 2^{x} \] ### Step 2: Simplify the terms Notice that \( 4 \cdot 2^{x + 1} \) can be rewritten as \( 4 \cdot 2 \cdot 2^{x} = 8 \cdot 2^{x} \). Thus, we can rewrite the equation as: \[ 8 \cdot 2^{2x} + 8 \cdot 2^{x} = 1 + 2^{x} \] ### Step 3: Move all terms to one side Rearranging the equation gives: \[ 8 \cdot 2^{2x} + 8 \cdot 2^{x} - 2^{x} - 1 = 0 \] This simplifies to: \[ 8 \cdot 2^{2x} + 7 \cdot 2^{x} - 1 = 0 \] ### Step 4: Substitute \( t = 2^{x} \) Let \( t = 2^{x} \). Then, \( 2^{2x} = t^2 \). Substitute this into the equation: \[ 8t^2 + 7t - 1 = 0 \] ### Step 5: Factor the quadratic equation Now we need to factor the quadratic equation \( 8t^2 + 7t - 1 = 0 \). We can use the method of splitting the middle term: \[ 8t^2 + 8t - t - 1 = 0 \] Grouping gives: \[ (8t^2 + 8t) + (-t - 1) = 0 \] Factoring out common terms: \[ 8t(t + 1) - 1(t + 1) = 0 \] This can be factored as: \[ (8t - 1)(t + 1) = 0 \] ### Step 6: Solve for \( t \) Setting each factor to zero gives: 1. \( 8t - 1 = 0 \) → \( t = \frac{1}{8} \) 2. \( t + 1 = 0 \) → \( t = -1 \) ### Step 7: Back substitute for \( x \) Recall that \( t = 2^{x} \): 1. From \( t = \frac{1}{8} \): \[ 2^{x} = \frac{1}{8} \implies 2^{x} = 2^{-3} \implies x = -3 \] 2. From \( t = -1 \): \[ 2^{x} = -1 \text{ (not possible, since the base of an exponent cannot be negative)} \] ### Final Solution Thus, the only valid solution is: \[ \boxed{-3} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve : 2^(2x +3) - 9 xx 2^(x) + 1 = 0

Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

Solve for x : 2^(5x - 1) = 4 xx 2^(3x + 1)

Solve : 5^(x)= 25 xx 5 ^(y) and 8 xx 2 ^(y) = 4 ^(x)

Solve for x : 2^(2x+1) = 8

x xx x^2 xx x^3 xx x^4

Solve the equation 4^(x)- 5 xx2^(x) + 4 = 0.

Solve for x:2^(x+2) gt (1/4)^(1/x)

Solve for x : 9xx3^(x)=(27)^(2x-5)

Solve : 8 ^(x+1) = 16 ^(y+2) and ( (1)/(2)) ^(3+x) = ((1)/(4))^(3y)

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (B)
  1. Solve : 4^(x - 2) - 2^(x +1) = 0

    Text Solution

    |

  2. Solve : 3^(x2) : 3^(x) = 9 : 1

    Text Solution

    |

  3. Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

    Text Solution

    |

  4. Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

    Text Solution

    |

  5. Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

    Text Solution

    |

  6. Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqr...

    Text Solution

    |

  7. Solve for x and y if : (sqrt(32))^(x)÷2^(y+1)= 1 and 8^(y)-16^(4-(x)...

    Text Solution

    |

  8. If x is a positive real number and the exponents are rational numbe...

    Text Solution

    |

  9. Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2...

    Text Solution

    |

  10. If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

    Text Solution

    |

  11. If a^x=b^y=c^2a n d\ b^2=a c , prove that y=(2x z)/(x+z)

    Text Solution

    |

  12. If 5^(-p)=4^(-q)=20^(r ). Show that (1)/(p)+(1)/(q)+(1)/(r )=0

    Text Solution

    |

  13. If m =! n and (m + n)^(-1) (m^(-1) + n^(-1)) = m^(x) n^(y), show that ...

    Text Solution

    |

  14. If 5^(x +1) = 25^(x-2), find the value of 3^(x-3) xx 2^(3-x).

    Text Solution

    |

  15. If 4^(x+3)=112+8xx4^(x), find (18x)^(3x)

    Text Solution

    |

  16. Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

    Text Solution

    |

  17. Solve for x : (a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).

    Text Solution

    |

  18. Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(...

    Text Solution

    |

  19. Solve for x : 2^((3x + 3)) = 2^((3x + 1)) + 48.

    Text Solution

    |

  20. Solve for x : 3(2^(x) + 1) - 2^(x + 2)) + 5 = 0.

    Text Solution

    |