Home
Class 9
MATHS
Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3)...

Solve :
`2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2^{2x} + 2^{x+2} - 4 \cdot 2^3 = 0\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2^{2x} + 2^{x+2} - 4 \cdot 2^3 = 0 \] First, simplify \(4 \cdot 2^3\): \[ 4 \cdot 2^3 = 4 \cdot 8 = 32 \] So, the equation becomes: \[ 2^{2x} + 2^{x+2} - 32 = 0 \] ### Step 2: Substitute \(2^x\) Let \(y = 2^x\). Then, we can rewrite \(2^{2x}\) as \(y^2\) and \(2^{x+2}\) as \(4y\) (since \(2^{x+2} = 2^x \cdot 2^2 = 4 \cdot 2^x\)): \[ y^2 + 4y - 32 = 0 \] ### Step 3: Factor the quadratic equation Now we need to factor the quadratic equation \(y^2 + 4y - 32 = 0\). We look for two numbers that multiply to \(-32\) and add to \(4\). The numbers \(8\) and \(-4\) work: \[ (y + 8)(y - 4) = 0 \] ### Step 4: Solve for \(y\) Setting each factor to zero gives us: \[ y + 8 = 0 \quad \Rightarrow \quad y = -8 \quad (\text{not valid since } y = 2^x > 0) \] \[ y - 4 = 0 \quad \Rightarrow \quad y = 4 \] ### Step 5: Substitute back for \(x\) Now substitute back for \(y\): \[ 2^x = 4 \] Since \(4 = 2^2\), we have: \[ 2^x = 2^2 \] This implies: \[ x = 2 \] ### Final Answer Thus, the solution to the equation is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

Solve : 4^(x - 2) - 2^(x +1) = 0

Solve : 2^(2x +3) - 9 xx 2^(x) + 1 = 0

solve the equation: 2^(2x) -2^(x+2)-4xx2^(3)=0 .

Solve for x : 2^(5x - 1) = 4 xx 2^(3x + 1)

Solve : 2x^(2)-3x+5 lt 0

Solve : 3x-10-2x^(2) lt 0

Solve for x : 2(2-3x) - (4 + x) = 7

Solve the equation 4^(x)- 5 xx2^(x) + 4 = 0.

Solve 4^(x)-3.2^(x)+2 gt 0 .

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (B)
  1. Solve : 3^(x2) : 3^(x) = 9 : 1

    Text Solution

    |

  2. Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

    Text Solution

    |

  3. Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

    Text Solution

    |

  4. Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

    Text Solution

    |

  5. Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqr...

    Text Solution

    |

  6. Solve for x and y if : (sqrt(32))^(x)÷2^(y+1)= 1 and 8^(y)-16^(4-(x)...

    Text Solution

    |

  7. If x is a positive real number and the exponents are rational numbe...

    Text Solution

    |

  8. Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2...

    Text Solution

    |

  9. If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

    Text Solution

    |

  10. If a^x=b^y=c^2a n d\ b^2=a c , prove that y=(2x z)/(x+z)

    Text Solution

    |

  11. If 5^(-p)=4^(-q)=20^(r ). Show that (1)/(p)+(1)/(q)+(1)/(r )=0

    Text Solution

    |

  12. If m =! n and (m + n)^(-1) (m^(-1) + n^(-1)) = m^(x) n^(y), show that ...

    Text Solution

    |

  13. If 5^(x +1) = 25^(x-2), find the value of 3^(x-3) xx 2^(3-x).

    Text Solution

    |

  14. If 4^(x+3)=112+8xx4^(x), find (18x)^(3x)

    Text Solution

    |

  15. Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

    Text Solution

    |

  16. Solve for x : (a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).

    Text Solution

    |

  17. Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(...

    Text Solution

    |

  18. Solve for x : 2^((3x + 3)) = 2^((3x + 1)) + 48.

    Text Solution

    |

  19. Solve for x : 3(2^(x) + 1) - 2^(x + 2)) + 5 = 0.

    Text Solution

    |

  20. Solve for x : 9^(x + 2)) = 720 + 9^(x)

    Text Solution

    |