Home
Class 9
MATHS
Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((...

Solve for x :
`4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4^{(x-1)} \cdot (0.5)^{(3-2x)} = \left(\frac{1}{8}\right)^{-x} \), we will follow these steps: ### Step 1: Rewrite the bases First, we will express all terms with a common base of 2. - \( 4 = 2^2 \), so \( 4^{(x-1)} = (2^2)^{(x-1)} = 2^{2(x-1)} = 2^{2x - 2} \). - \( 0.5 = \frac{1}{2} = 2^{-1} \), so \( (0.5)^{(3-2x)} = (2^{-1})^{(3-2x)} = 2^{-(3-2x)} = 2^{2x - 3} \). - \( 8 = 2^3 \), so \( \left(\frac{1}{8}\right)^{-x} = (2^{-3})^{-x} = 2^{3x} \). Now, substituting these into the equation gives us: \[ 2^{2x - 2} \cdot 2^{2x - 3} = 2^{3x} \] ### Step 2: Combine the left side Using the property of exponents that states \( a^m \cdot a^n = a^{m+n} \), we can combine the left side: \[ 2^{(2x - 2) + (2x - 3)} = 2^{3x} \] This simplifies to: \[ 2^{4x - 5} = 2^{3x} \] ### Step 3: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 4x - 5 = 3x \] ### Step 4: Solve for x Now, we will solve for \( x \): \[ 4x - 3x = 5 \] \[ x = 5 \] ### Final Answer Thus, the solution for \( x \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve for x : 2^(5x - 1) = 4 xx 2^(3x + 1)

Solve for x : 4(x-(1)/(x))^(2)+8(x+(1)/(x))=29 . x ne 0 .

Solve the following equations for x\ : (i)\ 4^(2x)=1/(32) (ii)\ 4^(x-1)\ xx\ (0. 5)^(3-2x)=(1/8)^x (iii)\ 2^(3x-7)=256

Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(0) = 27

Solve for x: 4^(x+1.5) + 9^(x+0.5) = 10.6^x .

Solve for x :4^x-3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

Solve for x:((x+1)(x-2))/(x-4)=0

Solve : 8 ^(x+1) = 16 ^(y+2) and ( (1)/(2)) ^(3+x) = ((1)/(4))^(3y)

Solve for : 2/(x+1)+3/(2(x-2))=(23)/(5x);x!=0,-1,2

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (B)
  1. Solve : 3^(x2) : 3^(x) = 9 : 1

    Text Solution

    |

  2. Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

    Text Solution

    |

  3. Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

    Text Solution

    |

  4. Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

    Text Solution

    |

  5. Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqr...

    Text Solution

    |

  6. Solve for x and y if : (sqrt(32))^(x)÷2^(y+1)= 1 and 8^(y)-16^(4-(x)...

    Text Solution

    |

  7. If x is a positive real number and the exponents are rational numbe...

    Text Solution

    |

  8. Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2...

    Text Solution

    |

  9. If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

    Text Solution

    |

  10. If a^x=b^y=c^2a n d\ b^2=a c , prove that y=(2x z)/(x+z)

    Text Solution

    |

  11. If 5^(-p)=4^(-q)=20^(r ). Show that (1)/(p)+(1)/(q)+(1)/(r )=0

    Text Solution

    |

  12. If m =! n and (m + n)^(-1) (m^(-1) + n^(-1)) = m^(x) n^(y), show that ...

    Text Solution

    |

  13. If 5^(x +1) = 25^(x-2), find the value of 3^(x-3) xx 2^(3-x).

    Text Solution

    |

  14. If 4^(x+3)=112+8xx4^(x), find (18x)^(3x)

    Text Solution

    |

  15. Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

    Text Solution

    |

  16. Solve for x : (a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).

    Text Solution

    |

  17. Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(...

    Text Solution

    |

  18. Solve for x : 2^((3x + 3)) = 2^((3x + 1)) + 48.

    Text Solution

    |

  19. Solve for x : 3(2^(x) + 1) - 2^(x + 2)) + 5 = 0.

    Text Solution

    |

  20. Solve for x : 9^(x + 2)) = 720 + 9^(x)

    Text Solution

    |